Suppr超能文献

Nitrous oxide increases normocapnic cerebral blood flow velocity but does not affect the dynamic cerebrovascular response to step changes in end-tidal P(CO2) in humans.

作者信息

Aono M, Sato J, Nishino T

机构信息

Department of Anesthesiology, Chiba University School of Medicine, Japan.

出版信息

Anesth Analg. 1999 Sep;89(3):684-9. doi: 10.1097/00000539-199909000-00029.

Abstract

UNLABELLED

We sought to clarify the effect of nitrous oxide (N2O) on the immediate responses of cerebral vasculature to sudden changes in arterial carbon dioxide tension in healthy humans. By use of a transcranial Doppler ultrasonography, blood flow velocity in the middle cerebral artery (V(MCA)) was measured during a step increase followed by a step decrease in end-tidal CO2 tension (PET(CO2)) between normo- and hypercapnia while subjects inspired gas mixtures containing 70%O2 + 30% N2 (control) and 70% O2 + 30% N2O (N2O) separately. During the control condition, both step increase and decrease in PET(CO2) produced rapid exponential changes in V(MCA). An increase in V(MCA) produced by the step increase in PET(CO2) was smaller (P < 0.001) and slower (P < 0.001) than a decrease in V(MCA) induced by the step decrease in PET(CO2). These general features of the dynamic cerebrovascular response were not affected by substitution of N2O for N2 in the inspired gases although N2O increased baseline V(MCA) by 15% (P < 0.001) compared with the control condition. We conclude that N2(O) in itself does not affect the dynamic cerebrovascular response to arterial CO2 changes, although it produces static mild cerebral vasodilation.

IMPLICATIONS

This study suggests that nitrous oxide does not affect the dynamic cerebrovascular reactivity to acute arterial carbon dioxide (CO2) changes, i.e., exponential changes in cerebral blood flow in response to step changes in alveolar CO2 tension, although it does produce a mild increase in normocapnic cerebral blood flow velocity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验