Suppr超能文献

增强氨基酸分解代谢的突变在稳定期赋予生长优势。

Mutations enhancing amino acid catabolism confer a growth advantage in stationary phase.

作者信息

Zinser E R, Kolter R

机构信息

Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

J Bacteriol. 1999 Sep;181(18):5800-7. doi: 10.1128/JB.181.18.5800-5807.1999.

Abstract

Starved cultures of Escherichia coli undergo successive rounds of population takeovers by mutants of increasing fitness. These mutants express the growth advantage in stationary phase (GASP) phenotype. Previous work identified the rpoS819 allele as a GASP mutation allowing cells to take over stationary-phase cultures after growth in rich media (M. M. Zambrano, D. A. Siegele, M. A. Almirón, A. Tormo, and R. Kolter, Science 259:1757-1760, 1993). Here we have identified three new GASP loci from an aged rpoS819 strain: sgaA, sgaB, and sgaC. Each locus is capable of conferring GASP on the rpoS819 parent, and they can provide successively higher fitnesses for the bacteria in the starved cultures. All four GASP mutations isolated thus far allow for faster growth on both individual and mixtures of amino acids. Each mutation confers a growth advantage on a different subset of amino acids, and these mutations act in concert to increase the overall catabolic capacity of the cell. We present a model whereby this enhanced ability to catabolize amino acids is responsible for the fitness gain during carbon starvation, as it may allow GASP mutants to outcompete the parental cells when growing on the amino acids released by dying cells.

摘要

饥饿培养的大肠杆菌会经历多轮由适应性不断增强的突变体进行的种群接管。这些突变体表现出稳定期生长优势(GASP)表型。先前的研究确定rpoS819等位基因为一种GASP突变,它能使细胞在丰富培养基中生长后接管稳定期培养物(M. M. 赞布拉诺、D. A. 西格勒、M. A. 阿尔米龙、A. 托莫和R. 科尔特,《科学》259:1757 - 1760, 1993)。在此,我们从一株老化的rpoS819菌株中鉴定出三个新的GASP位点:sgaA、sgaB和sgaC。每个位点都能够赋予rpoS819亲本GASP表型,并且它们能为饥饿培养中的细菌提供依次更高的适应性。迄今为止分离出的所有四个GASP突变都能使细菌在氨基酸个体及混合物上生长得更快。每个突变在不同的氨基酸亚组上赋予生长优势,并且这些突变协同作用以提高细胞的整体分解代谢能力。我们提出一个模型,即这种增强的氨基酸分解代谢能力是碳饥饿期间适应性增加的原因,因为它可能使GASP突变体在利用死亡细胞释放的氨基酸生长时胜过亲本细胞。

相似文献

1
Mutations enhancing amino acid catabolism confer a growth advantage in stationary phase.
J Bacteriol. 1999 Sep;181(18):5800-7. doi: 10.1128/JB.181.18.5800-5807.1999.
2
Prolonged stationary-phase incubation selects for lrp mutations in Escherichia coli K-12.
J Bacteriol. 2000 Aug;182(15):4361-5. doi: 10.1128/JB.182.15.4361-4365.2000.
4
Involvement of the global regulator H-NS in the survival of Escherichia coli in stationary phase.
J Bacteriol. 2012 Oct;194(19):5285-93. doi: 10.1128/JB.00840-12. Epub 2012 Jul 27.
6
GASP phenotype: presence in enterobacteria and independence of sigmaS in its acquisition.
FEMS Microbiol Lett. 2003 Aug 29;225(2):201-6. doi: 10.1016/S0378-1097(03)00514-7.
7
The nature of laboratory domestication changes in freshly isolated Escherichia coli strains.
Environ Microbiol. 2014 Mar;16(3):813-28. doi: 10.1111/1462-2920.12208. Epub 2013 Jul 29.
9
The growth advantage in stationary-phase (GASP) phenomenon in mixed cultures of enterobacteria.
FEMS Microbiol Lett. 2007 Jan;266(1):119-27. doi: 10.1111/j.1574-6968.2006.00515.x.
10
Mutations that activate the silent bgl operon of Escherichia coli confer a growth advantage in stationary phase.
J Bacteriol. 2005 Dec;187(23):7912-7. doi: 10.1128/JB.187.23.7912-7917.2005.

引用本文的文献

3
Evolution of pH-sensitive transcription termination in during adaptation to repeated long-term starvation.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2405546121. doi: 10.1073/pnas.2405546121. Epub 2024 Sep 19.
4
Evolution of pH-sensitive transcription termination during adaptation to repeated long-term starvation.
bioRxiv. 2024 Mar 1:2024.03.01.582989. doi: 10.1101/2024.03.01.582989.
5
Inference of transcriptome signatures of Escherichia coli in long-term stationary phase.
Sci Rep. 2023 Apr 6;13(1):5647. doi: 10.1038/s41598-023-32525-4.
6
Root exudate-derived compounds stimulate the phosphorus solubilizing ability of bacteria.
Sci Rep. 2023 Mar 10;13(1):4050. doi: 10.1038/s41598-023-30915-2.
8
Metabolic basis for the evolution of a common pathogenic variant.
Elife. 2022 May 3;11:e76555. doi: 10.7554/eLife.76555.
10
Vibrio harveyi Exhibits the Growth Advantage in Stationary Phase Phenotype during Long-Term Incubation.
Microbiol Spectr. 2022 Feb 23;10(1):e0214421. doi: 10.1128/spectrum.02144-21. Epub 2022 Jan 26.

本文引用的文献

1
Evolution of microbial diversity during prolonged starvation.
Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4023-7. doi: 10.1073/pnas.96.7.4023.
2
Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria.
Science. 1998 Dec 18;282(5397):2254-6. doi: 10.1126/science.282.5397.2254.
3
Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili.
Mol Microbiol. 1998 Oct;30(2):285-93. doi: 10.1046/j.1365-2958.1998.01061.x.
5
Use of a glycerol-limited, long-term chemostat for isolation of Escherichia coli mutants with improved physiological properties.
Microbiology (Reading). 1997 May;143 ( Pt 5):1567-1574. doi: 10.1099/00221287-143-5-1567.
6
GASPing for life in stationary phase.
Cell. 1996 Jul 26;86(2):181-4. doi: 10.1016/s0092-8674(00)80089-6.
8
Escherichia coli mutants lacking NADH dehydrogenase I have a competitive disadvantage in stationary phase.
J Bacteriol. 1993 Sep;175(17):5642-7. doi: 10.1128/jb.175.17.5642-5647.1993.
9
Amplifying DNA with arbitrary oligonucleotide primers.
PCR Methods Appl. 1993 Oct;3(2):85-94. doi: 10.1101/gr.3.2.85.
10
Mutations in NADH:ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids.
J Bacteriol. 1994 Apr;176(8):2143-50. doi: 10.1128/jb.176.8.2143-2150.1994.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验