Suppr超能文献

纳米量热法揭示了在长期稳定期经历适应性进化的大肠杆菌细胞的生长动态。

Nanocalorimetry Reveals the Growth Dynamics of Escherichia coli Cells Undergoing Adaptive Evolution during Long-Term Stationary Phase.

机构信息

Center for Dark Energy Biosphere Investigations (C-DEBI), University of Southern California, Los Angeles, California, USA

Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.

出版信息

Appl Environ Microbiol. 2019 Jul 18;85(15). doi: 10.1128/AEM.00968-19. Print 2019 Aug 1.

Abstract

Bacterial populations in long-term stationary-phase (LTSP) laboratory cultures can provide insights into physiological and genetic adaptations to low-energy conditions and population dynamics in natural environments. While overall population density remains stable, these communities are very dynamic and are characterized by the rapid emergence and succession of distinct mutants expressing the growth advantage in stationary phase (GASP) phenotype, which can reflect an increased capacity to withstand energy limitations and environmental stress. Here, we characterize the metabolic heat signatures and growth dynamics of GASP mutants within an evolving population using isothermal calorimetry. We aged in anaerobic batch cultures over 20 days inside an isothermal nanocalorimeter and observed distinct heat events related to the emergence of three mutant populations expressing the GASP phenotype after 1.5, 3, and 7 days. Given the heat produced by each population, the maximum number of GASP mutant cells was calculated, revealing abundances of ∼2.5 × 10, ∼7.5 × 10, and ∼9.9 × 10 cells in the populations, respectively. These data indicate that mutants capable of expressing the GASP phenotype can be acquired during the exponential growth phase and subsequently expressed in LTSP culture. The present study is innovative in that we have identified previously unknown growth dynamics related to the temporal expression of the growth advantage in stationary phase (GASP) phenotype that allow mutants in long-term stationary-phase cultures to capitalize on the decrease of energy over prolonged incubation periods. By remaining in an active, but growth-limited, metabolic state similar to that observed in GASP cells grown , natural microbial communities might be able to prevail over much longer time scales. We believe this report to be a remarkable methodological and conceptual breakthrough in the study of the long-term survival and evolution of bacteria.

摘要

长期静止期(LTSP)实验室培养物中的细菌种群可以深入了解在低能量条件下的生理和遗传适应以及自然环境中的种群动态。虽然总体种群密度保持稳定,但这些群落非常动态,其特征是快速出现和相继出现具有静止期生长优势(GASP)表型的独特突变体,这可以反映出增强承受能量限制和环境压力的能力。在这里,我们使用等温量热法来描述进化种群中 GASP 突变体的代谢热特征和生长动态。我们在等温纳米量热计内对厌氧分批培养物进行老化,历时 20 天以上,并观察到与在第 1.5、3 和 7 天出现的三个突变体种群相关的明显热事件。鉴于每个种群产生的热量,计算出具有 GASP 表型的 GASP 突变体细胞的最大数量,分别揭示了每个种群中约 2.5×10、7.5×10 和 9.9×10 个细胞的丰度。这些数据表明,能够表达 GASP 表型的突变体可以在指数生长阶段获得,随后在 LTSP 培养物中表达。本研究的创新性在于,我们已经确定了与静止期生长优势(GASP)表型的时间表达相关的以前未知的生长动态,这些动态使长期静止期培养物中的突变体能够利用长时间培养过程中能量的减少。通过保持类似于在 GASP 细胞中观察到的活跃但生长受限的代谢状态,自然微生物群落可能能够在更长的时间尺度上占主导地位。我们认为,这是对细菌长期存活和进化研究的一个显著的方法学和概念上的突破。

相似文献

3
Vibrio harveyi Exhibits the Growth Advantage in Stationary Phase Phenotype during Long-Term Incubation.
Microbiol Spectr. 2022 Feb 23;10(1):e0214421. doi: 10.1128/spectrum.02144-21. Epub 2022 Jan 26.
4
Prolonged stationary-phase incubation selects for lrp mutations in Escherichia coli K-12.
J Bacteriol. 2000 Aug;182(15):4361-5. doi: 10.1128/JB.182.15.4361-4365.2000.
5
Adaptations Accumulated under Prolonged Resource Exhaustion Are Highly Transient.
mSphere. 2020 Aug 12;5(4):e00388-20. doi: 10.1128/mSphere.00388-20.
6
Mutations enhancing amino acid catabolism confer a growth advantage in stationary phase.
J Bacteriol. 1999 Sep;181(18):5800-7. doi: 10.1128/JB.181.18.5800-5807.1999.
7
Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.
Genetics. 2013 Jun;194(2):409-20. doi: 10.1534/genetics.113.151837. Epub 2013 Apr 15.
8
Adaptation of Escherichia coli to long-term batch culture in various rich media.
Res Microbiol. 2018 Apr;169(3):145-156. doi: 10.1016/j.resmic.2018.01.003. Epub 2018 Feb 15.
9
Listeria monocytogenes adapts to long-term stationary phase survival without compromising bacterial virulence.
FEMS Microbiol Lett. 2011 Oct;323(2):171-9. doi: 10.1111/j.1574-6968.2011.02373.x. Epub 2011 Aug 24.
10
The role of sigma factor competition in bacterial adaptation under prolonged starvation.
Microbiology (Reading). 2022 May;168(5). doi: 10.1099/mic.0.001195.

引用本文的文献

1
Controlled burn: interconnections between energy-spilling pathways and metabolic signaling in bacteria.
J Bacteriol. 2025 May 22;207(5):e0054224. doi: 10.1128/jb.00542-24. Epub 2025 Mar 31.
2
Mechanistic study of a low-power bacterial maintenance state using high-throughput electrochemistry.
Cell. 2024 Nov 27;187(24):6882-6895.e8. doi: 10.1016/j.cell.2024.09.042. Epub 2024 Oct 23.
3
Cell-specific rates of sulfate reduction and fermentation in the sub-seafloor biosphere.
Front Microbiol. 2023 Jul 24;14:1198664. doi: 10.3389/fmicb.2023.1198664. eCollection 2023.
4
Endurance of extremely prolonged nutrient prevention across kingdoms of life.
iScience. 2021 Jun 19;24(7):102745. doi: 10.1016/j.isci.2021.102745. eCollection 2021 Jul 23.

本文引用的文献

1
Physiological responses of KT2442 to phosphate starvation.
Microbiology (Reading). 1996 Jan;142(1):155-163. doi: 10.1099/13500872-142-1-155.
2
Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions.
Front Microbiol. 2018 Feb 1;9:109. doi: 10.3389/fmicb.2018.00109. eCollection 2018.
3
The EcoCyc database: reflecting new knowledge about Escherichia coli K-12.
Nucleic Acids Res. 2017 Jan 4;45(D1):D543-D550. doi: 10.1093/nar/gkw1003. Epub 2016 Nov 28.
4
Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations.
FEMS Microbiol Rev. 2015 Sep;39(5):688-728. doi: 10.1093/femsre/fuv020. Epub 2015 May 20.
5
Light enhances survival of Dinoroseobacter shibae during long-term starvation.
PLoS One. 2013 Dec 30;8(12):e83960. doi: 10.1371/journal.pone.0083960. eCollection 2013.
6
Culture volume and vessel affect long-term survival, mutation frequency, and oxidative stress of Escherichia coli.
Appl Environ Microbiol. 2014 Mar;80(5):1732-8. doi: 10.1128/AEM.03150-13. Epub 2013 Dec 27.
7
Microbial life under extreme energy limitation.
Nat Rev Microbiol. 2013 Feb;11(2):83-94. doi: 10.1038/nrmicro2939.
8
Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment.
Nature. 2012 Mar 18;484(7392):101-4. doi: 10.1038/nature10905.
9
Adaptive evolution in single species bacterial biofilms.
FEMS Microbiol Lett. 2009 Apr;293(1):135-40. doi: 10.1111/j.1574-6968.2009.01526.x. Epub 2009 Feb 23.
10
Cell counting and carbon utilization velocities via microbial calorimetry.
Biotechnol Bioeng. 1990 Jan 5;35(1):1-7. doi: 10.1002/bit.260350102.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验