Gyenge C C, Bowen B D, Reed R K, Bert J L
Department of Chemical Engineering, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
Am J Physiol. 1999 Sep;277(3):H1228-40. doi: 10.1152/ajpheart.1999.277.3.H1228.
A mathematical model of short-term whole body fluid, protein, and ion distribution and transport developed earlier [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1215-H1227, 1999] is validated using experimental data available in the literature. The model was tested against data measured for the following three types of experimental infusions: 1) hyperosmolar saline solutions with an osmolarity in the range of 2,000-2,400 mosmol/l, 2) saline solutions with an osmolarity of approximately 270 mosmol/l and composition comparable with Ringer solution, and 3) an isosmotic NaCl solution with an osmolarity of approximately 300 mosmol/l. Good agreement between the model predictions and the experimental data was obtained with respect to the trends and magnitudes of fluid shifts between the intra- and extracellular compartments, extracellular ion and protein contents, and hematocrit values. The model is also able to yield information about inaccessible or difficult-to-measure system variables such as intracellular ion contents, cellular volumes, and fluid fluxes across the vascular capillary membrane, data that can be used to help interpret the behavior of the system.
利用文献中现有的实验数据,对之前建立的短期全身液体、蛋白质和离子分布与运输的数学模型[见配套论文:C.C. 京盖、B.D. 鲍恩、R.K. 里德和J.L. 伯特。《美国生理学杂志》277卷(心脏循环生理学46):H1215 - H1227,1999年]进行了验证。该模型针对以下三种实验输注所测量的数据进行了测试:1)渗透压在2000 - 2400毫摩尔/升范围内的高渗盐溶液,2)渗透压约为270毫摩尔/升且成分与林格氏溶液相当的盐溶液,以及3)渗透压约为300毫摩尔/升的等渗氯化钠溶液。在细胞内和细胞外液室之间的液体转移趋势和幅度、细胞外离子和蛋白质含量以及血细胞比容值方面,模型预测与实验数据取得了良好的一致性。该模型还能够得出关于难以获取或难以测量的系统变量的信息,如细胞内离子含量、细胞体积以及跨血管毛细血管膜的液体通量,这些数据可用于帮助解释系统的行为。