Kochetov A V, Ponomarenko M P, Frolov A S, Kisselev L L, Kolchanov N A
Institute of Cytology and Genetics, Pr. Lavrentieva 10, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, Moscow, 117984, Russia.
Bioinformatics. 1999 Jul-Aug;15(7-8):704-12. doi: 10.1093/bioinformatics/15.7.704.
It is well known that eukaryotic mRNAs are translated at different levels depending on their sequence characteristics. Evaluation of mRNA translatability is of importance in prediction of the gene expression pattern by computer methods and to improve the recognition of mRNAs within cloned nucleotide sequences. It may also be used in biotechnological experiments to optimize the expression of foreign genes in transgenic organisms.
The sets of 5' untranslated region characteristics, significantly different between mRNAs encoding abundant and scarce polypeptides, were determined for mammals, dicot plants and monocot plants, and collected in the LEADER_RNA database. Computer tools for the prediction of mRNA translatability are presented.
Programs for mRNA translatability prediction are available at http://wwwmgs.bionet.nsc. ru/programs/acts2/mo_mRNA.htm (for monocots), http://wwwmgs.bionet. nsc.ru/programs/acts2/di_mRNA.htm (for dicots) and http://wwwmgs. bionet.nsc.ru/programs/acts2/ma_mRNA.htm (for mammals). The LEADER_RNA database may be accessed at: http://wwwmgs.bionet.nsc. ru/systems/LeaderRNA/.
众所周知,真核生物mRNA根据其序列特征在不同水平上进行翻译。评估mRNA的可翻译性对于通过计算机方法预测基因表达模式以及提高对克隆核苷酸序列中mRNA的识别至关重要。它还可用于生物技术实验,以优化转基因生物中外源基因的表达。
确定了编码丰富和稀缺多肽的mRNA之间5'非翻译区特征的差异集,这些差异集针对哺乳动物、双子叶植物和单子叶植物,并收集在LEADER_RNA数据库中。展示了用于预测mRNA可翻译性的计算机工具。