Lang J, Erdmann B, Seebass M
Konrad-Zuse-Zentrum für Informationstechnik, Berlin, Dahlem, Federal Republic of Germany.
IEEE Trans Biomed Eng. 1999 Sep;46(9):1129-38. doi: 10.1109/10.784145.
We describe an optimization process specially designed for regional hyperthermia of deep-seated tumors in order to achieve desired steady-state temperature distributions. A nonlinear three-dimensional heat transfer model based on temperature-dependent blood perfusion is applied to predict the temperature. Using linearly implicit methods in time and adaptive multilevel finite elements in space, we are able to integrate efficiently the instationary nonlinear heat equation with high accuracy. Optimal heating is obtained by minimizing an integral objective function which measures the distance between desired and model predicted temperatures. A sequence of minima is calculated from successively improved constant-rate perfusion models employing a damped Newton method in an inner iteration. We compare temperature distributions for two individual patients calculated on coarse and fine spatial grids and present numerical results of optimizations for a Sigma 60 Applicator of the BSD 2000 Hyperthermia System.
我们描述了一种专门为深部肿瘤区域热疗设计的优化过程,以实现所需的稳态温度分布。基于温度依赖型血液灌注的非线性三维热传递模型被用于预测温度。在时间上使用线性隐式方法,在空间上使用自适应多层有限元,我们能够高效且高精度地积分非稳态非线性热方程。通过最小化一个衡量期望温度与模型预测温度之间距离的积分目标函数来获得最优加热。在内部迭代中采用阻尼牛顿法,从相继改进的恒速灌注模型计算出一系列最小值。我们比较了在粗空间网格和细空间网格上为两名个体患者计算的温度分布,并给出了BSD 2000热疗系统Sigma 60施源器的优化数值结果。