Caruso M, Miele C, Oriente F, Maitan A, Bifulco G, Andreozzi F, Condorelli G, Formisano P, Beguinot F
Dipartimento di Biologia e Patologia Cellulare e Molecolare, Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Federico II University of Naples, Naples 80131, Italy.
J Biol Chem. 1999 Oct 1;274(40):28637-44. doi: 10.1074/jbc.274.40.28637.
In L6 skeletal muscle cells expressing human insulin receptors (L6(hIR)), exposure to 25 mM glucose for 3 min induced a rapid 3-fold increase in GLUT1 and GLUT4 membrane translocation and glucose uptake. The high glucose concentration also activated the insulin receptor kinase toward the endogenous insulin receptor substrates (IRS)-1 and IRS-2. At variance, in L6 cells expressing kinase-deficient insulin receptors, the exposure to 25 mM glucose elicited no effect on glucose disposal. In the L6(hIR) cells, the acute effect of glucose on insulin receptor kinase was paralleled by a 2-fold decrease in both the membrane and the insulin receptor co-precipitated protein kinase C (PKC) activities and a 3-fold decrease in receptor Ser/Thr phosphorylation. Western blotting of the receptor precipitates with isoform-specific PKC antibodies revealed that the glucose-induced decrease in membrane- and receptor-associated PKC activities was accounted for by dissociation of PKCalpha but not of PKCbeta or -delta. This decrease in PKCalpha was paralleled by a similarly sized increase in cytosolic PKCalpha. In intact L6(hIR) cells, inhibition of PKCalpha expression by using a specific antisense oligonucleotide caused a 3-fold increase in IRS phosphorylation by the insulin receptor. This effect was independent of insulin and accompanied by a 2.5-fold increase in glucose disposal by the cells. Thus, in the L6 skeletal muscle cells, glucose acutely regulates its own utilization through the insulin signaling system, independent of insulin. Glucose autoregulation appears to involve PKCalpha dissociation from the insulin receptor and its cytosolic translocation.
在表达人胰岛素受体的L6骨骼肌细胞(L6(hIR))中,暴露于25 mM葡萄糖3分钟可诱导GLUT1和GLUT4膜转位及葡萄糖摄取迅速增加3倍。高葡萄糖浓度还激活了胰岛素受体激酶,使其作用于内源性胰岛素受体底物(IRS)-1和IRS-2。相比之下,在表达激酶缺陷型胰岛素受体的L6细胞中,暴露于25 mM葡萄糖对葡萄糖代谢无影响。在L6(hIR)细胞中,葡萄糖对胰岛素受体激酶的急性作用伴随着膜和与胰岛素受体共沉淀的蛋白激酶C(PKC)活性降低2倍,以及受体丝氨酸/苏氨酸磷酸化降低3倍。用亚型特异性PKC抗体对受体沉淀物进行蛋白质印迹分析显示,葡萄糖诱导的膜和受体相关PKC活性降低是由PKCalpha解离引起的,而非PKCbeta或PKCdelta。PKCalpha的这种降低伴随着胞质PKCalpha等量增加。在完整的L6(hIR)细胞中,使用特异性反义寡核苷酸抑制PKCalpha表达可导致胰岛素受体使IRS磷酸化增加3倍。这种作用与胰岛素无关,并伴随着细胞葡萄糖代谢增加2.5倍。因此,在L6骨骼肌细胞中,葡萄糖通过胰岛素信号系统独立于胰岛素急性调节其自身利用。葡萄糖的自身调节似乎涉及PKCalpha从胰岛素受体解离及其向胞质转位。