Sir James Black Centre, Univ. of Dundee, United Kingdom.
Am J Physiol Endocrinol Metab. 2010 Sep;299(3):E402-12. doi: 10.1152/ajpendo.00171.2010. Epub 2010 Jun 8.
Atypical protein kinase C (aPKC) isoforms (lambda and zeta) have been implicated in the control of insulin-stimulated glucose uptake in adipose and skeletal muscle, but their precise role in this process remains unclear, especially in light of accumulating evidence showing that, in response to numerous stimuli, including insulin and lipids such as ceramide, activation of aPKCs acts to negatively regulate key insulin-signaling molecules, such as insulin receptor substrate-1 (IRS-1) and protein kinase B (PKB)/cAMP-dependent PKC (Akt). In this study, we have depleted PKClambda in L6 skeletal muscle cells using RNA interference and assessed the effect this has upon insulin action. Muscle cells did not express detectable amounts of PKCzeta. Depletion of PKClambda (>95%) had no significant effect on the expression of proteins participating in insulin signaling [i.e., insulin receptor, IRS-1, phosphatidylinositol 3-kinase (PI 3-kinase), PKB, or phosphate and tensin homolog deleted on chromosome 10] or those involved in glucose transport [Akt substrate of 160 kDa, glucose transporter (GLUT)1, or GLUT4]. However, PKClambda-depleted muscle cells exhibited greater activation of PKB/Akt and phosphorylation of its downstream target glycogen synthase kinase 3, in the basal state and displayed greater responsiveness to submaximal doses of insulin with respect to p85-PI 3-kinase/IRS-1 association and PKB activation. The increase in basal and insulin-induced signaling resulted in an associated enhancement of basal and insulin-stimulated glucose transport, both of which were inhibited by the PI 3-kinase inhibitor wortmannin. Additionally, like RNAi-mediated depletion of PKClambda, overexpression of a dominant-negative mutant of PKCzeta induced a similar insulin-sensitizing effect on PKB activation. Our findings indicate that aPKCs are likely to play an important role in restraining proximal insulin signaling events but appear dispensable with respect to insulin-stimulated glucose uptake in cultured L6 muscle cells.
非典型蛋白激酶 C(aPKC)同工型(lambda 和 zeta)已被牵涉到控制脂肪组织和骨骼肌中的胰岛素刺激的葡萄糖摄取,但它们在这个过程中的精确作用仍不清楚,尤其是考虑到越来越多的证据表明,在许多刺激物的作用下,包括胰岛素和神经酰胺等脂质,aPKC 的激活作用于负调节关键的胰岛素信号分子,如胰岛素受体底物-1(IRS-1)和蛋白激酶 B(PKB)/cAMP 依赖性蛋白激酶(Akt)。在这项研究中,我们使用 RNA 干扰技术耗尽了 L6 骨骼肌细胞中的 PKClambda,并评估了这对胰岛素作用的影响。肌肉细胞没有表达可检测量的 PKCzeta。PKClambda 的耗竭(>95%)对参与胰岛素信号转导的蛋白质(即胰岛素受体、IRS-1、磷脂酰肌醇 3-激酶(PI 3-激酶)、PKB 或磷酸和张力蛋白同源物缺失于染色体 10)或参与葡萄糖转运的蛋白质(Akt 底物 160 kDa、葡萄糖转运蛋白(GLUT)1 或 GLUT4)没有显著影响。然而,PKClambda 耗尽的肌肉细胞在基础状态下表现出更高的 PKB/Akt 激活和其下游靶标糖原合酶激酶 3 的磷酸化,并且在亚最大剂量胰岛素的作用下表现出更大的反应性,这与 p85-PI 3-激酶/IRS-1 结合和 PKB 激活有关。基础和胰岛素诱导的信号转导的增加导致基础和胰岛素刺激的葡萄糖转运的相关增强,这两者都被 PI 3-激酶抑制剂 wortmannin 抑制。此外,与 PKClambda 的 RNAi 介导的耗竭一样,PKCzeta 的显性失活突变体的过表达也诱导了 PKB 激活的类似胰岛素增敏作用。我们的研究结果表明,aPKC 可能在抑制胰岛素信号的早期事件中发挥重要作用,但在培养的 L6 肌肉细胞中,它们对于胰岛素刺激的葡萄糖摄取似乎是可有可无的。