Rompel A, Fischer H, Meiwes D, Büldt-Karentzopoulos K, Dillinger R, Tuczek F, Witzel H, Krebs B
Anorganisch-Chemisches Institut, Universität Münster, Germany.
J Biol Inorg Chem. 1999 Feb;4(1):56-63. doi: 10.1007/s007750050289.
We purified two catechol oxidases from Lycopus europaeus and Populus nigra which only catalyze the oxidation of catechols to quinones without hydroxylating tyrosine. The molecular mass of the Lycopus enzyme was determined to 39,800 Da and the mass of the Populus enzyme was determined to 56,050 Da. Both catechol oxidases are inhibited by thiourea, N-phenylthiourea, dithiocarbamate, and cyanide, but show different pH behavior using catechol as substrate. Atomic absorption spectrosopic analysis found 1.5 copper atoms per protein molecule. Using EPR spectroscopy we determined 1.8 Cu per molecule catechol oxidase. Furthermore, EPR spectroscopy demonstrated that catechol oxidase is a copper enzyme of type 3. The lack of an EPR signal is due to strong antiferromagnetic coupling that requires a bridging ligand between the two copper ions in the met preparation. Addition to H2O2 to both enzymes leads to oxy catechol oxidase. In the UV/Vis spectrum two new absorption bands occur at 345 nm and 580 nm. In accordance with the oxy forms of hemocyanin and tyrosinase the absorption band at 345 nm is due to an O2(2-) (pi sigma )-->Cu(II) (dx2 - y2) charge transfer (CT) transition. The absorption band at 580 nm corresponds to the second O2(2)- (pi v)-->Cu(II) (dx2 - y2) CT transition. The UV/Vis bands in combination with the resonance Raman spectra of oxy catechol oxidase indicate a mu-eta 2:eta 2 binding mode for dioxygen. The intense resonance Raman peak at 277 cm-1, belonging to a Cu-N (axial His) stretching mode, suggests that catechol oxidase has six terminal His ligands, as known for molluscan and arthropodan hemocyanin.
我们从欧地笋和黑杨中纯化出了两种儿茶酚氧化酶,它们仅催化儿茶酚氧化为醌,而不使酪氨酸羟化。欧地笋酶的分子量测定为39,800道尔顿,黑杨酶的分子量测定为56,050道尔顿。两种儿茶酚氧化酶均受到硫脲、N-苯基硫脲、二硫代氨基甲酸盐和氰化物的抑制,但以儿茶酚为底物时表现出不同的pH行为。原子吸收光谱分析发现每个蛋白质分子含有1.5个铜原子。利用电子顺磁共振光谱,我们测定出每个儿茶酚氧化酶分子含有1.8个铜原子。此外,电子顺磁共振光谱表明儿茶酚氧化酶是3型铜酶。缺乏电子顺磁共振信号是由于强反铁磁耦合,这需要在高铁制剂中的两个铜离子之间有一个桥连配体。向两种酶中加入过氧化氢会生成氧合儿茶酚氧化酶。在紫外/可见光谱中,在345纳米和580纳米处出现两个新的吸收带。与血蓝蛋白和酪氨酸酶的氧合形式一致,345纳米处的吸收带是由于O2(2 -) (πσ*)→Cu(II) (dx2 - y2)电荷转移(CT)跃迁。580纳米处的吸收带对应于第二个O2(2 -) (πν*)→Cu(II) (dx2 - y2) CT跃迁。紫外/可见吸收带与氧合儿茶酚氧化酶的共振拉曼光谱相结合,表明双氧的μ-η2:η2结合模式。277厘米-1处强烈的共振拉曼峰属于Cu-N(轴向组氨酸)伸缩模式,表明儿茶酚氧化酶有六个末端组氨酸配体,这与软体动物和节肢动物血蓝蛋白的情况相同。