Schurig V, Wistuba D
Institut für Organische Chemie, Universität Tübingen, Germany.
Electrophoresis. 1999 Sep;20(12):2313-28. doi: 10.1002/(SICI)1522-2683(19990801)20:12<2313::AID-ELPS2313>3.0.CO;2-F.
Enantiomer separation by electrochromatography employing modified cyclodextrins as stationary phases is performed in two ways. (i) Polysiloxane-linked permethylated beta-cyclodextrin (Chirasil-Dex 1) or related selectors are coated and immobilized onto the inner surface of a capillary column. Enantiomer separation is performed in the open tube and the method is referred to as open-tubular capillary electrochromatography (o-CEC). (ii) Silica-linked native beta-cyclodextrin, permethylated beta-cyclodextrin (Chira-Dex 2) or hydroxypropyl-beta-cyclodextrin are filled into a capillary column and the bed is secured by two frits. Enantiomer separation is performed in a packed column and the method is referred to as packed capillary electrochromatography (p-CEC). In a unified instrumental approach, method (i) as well as method (ii) can be operated both in the electro- and pressure-driven modes (o-CEC vs. open-tubular liquid chromatography (o-LC) and p-CEC vs. p-LC). It is demonstrated that the electro-driven variant affords higher efficiencies at comparable elution times. Employing a single open-tubular column coated with Chirasil-Dex 1, a unified enantioselective approach can be realized in which the same selectand is separated using all existing chromatographic modes for enantiomers, i.e., gas chromatography (GC), super-critical fluid chromatography (SFC), o-LC and o-CEC. As the chiral selector is utilized as a stationary phase, an additional chiral selector may be added to the mobile phase. In the resulting dual chiral recognition systems, enhancement of enantioselectivity (matched case) or compensation of enantioselectivity (mismatched case) may be observed. The overall enantioselectivity is dependent on the sense of enantioselectivity of the selectors chosen and their influence on the electrophoretic and electroosmotic migration of the enantiomers of a selectand.
采用改性环糊精作为固定相,通过电色谱法进行对映体分离有两种方式。(i) 将聚硅氧烷连接的全甲基化β-环糊精(Chirasil-Dex 1)或相关选择剂涂覆并固定在毛细管柱的内表面。对映体分离在开口管中进行,该方法称为开管毛细管电色谱法(o-CEC)。(ii) 将硅胶连接的天然β-环糊精、全甲基化β-环糊精(Chira-Dex 2)或羟丙基-β-环糊精填充到毛细管柱中,并用两个烧结片固定柱床。对映体分离在填充柱中进行,该方法称为填充毛细管电色谱法(p-CEC)。在统一的仪器方法中,方法(i)以及方法(ii)都可以在电动和压力驱动模式下运行(o-CEC与开管液相色谱法(o-LC)以及p-CEC与填充液相色谱法(p-LC))。结果表明,在可比的洗脱时间下,电动变体具有更高的效率。使用一根涂有Chirasil-Dex 1的单根开管柱,可以实现一种统一的对映体选择性方法,即在该方法中,使用所有现有的对映体色谱模式(即气相色谱法(GC)、超临界流体色谱法(SFC)、o-LC和o-CEC)分离相同的被选择物。由于手性选择剂用作固定相,可向流动相中添加额外的手性选择剂。在所得的双对手性识别系统中,可能会观察到对映体选择性的增强(匹配情况)或对映体选择性的补偿(不匹配情况)。整体对映体选择性取决于所选选择剂的对映体选择性方向及其对被选择物对映体的电泳和电渗迁移的影响。