Suppr超能文献

Multiple mammalian proteasomal ATPases, but not proteasome itself, are associated with TATA-binding protein and a novel transcriptional activator, TIP120.

作者信息

Makino Y, Yoshida T, Yogosawa S, Tanaka K, Muramatsu M, Tamura T A

机构信息

Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.

出版信息

Genes Cells. 1999 Sep;4(9):529-39. doi: 10.1046/j.1365-2443.1999.00277.x.

Abstract

BACKGROUND

SUG1 belongs to proteasomal ATPase. Previous studies have demonstrated that SUG1 is associated with TBP. It is assumed to be involved in transcriptional regulation in addition to proteolysis. In this study, we investigated the association of mammalian SUG1 with TBP in more detail.

RESULTS

Pull-down experiments with TBP revealed multiple TBP-interacting proteins (TIPs) that were recovered dependent upon the presence of C-terminal conserved domain of TBP. By 2-D electrophoresis, we identified SUG1 in TIPs. By using far-Western analysis, we identified two proteins that could directly bind to TBP: SUG1 and another proteasomal ATPase (S4). Protein microsequencing and Western blotting identified all the remaining proteasomal ATPases (MSS1, TBP1, TBP7, and SUG2) in the TIP preparations. We present evidence that TBP and at least SUG1, MSS1, and S4 form a complex in the cell. However, no evidence of association of TBP with the 26S proteasome or its 19S regulatory unit was obtained. The molecular mass of the TBP/ATPases-complex, which also included a novel transcription regulatory factor, TIP120, was estimated to be approximately 800 kDa.

CONCLUSION

These results suggest that there is a novel multisubunit complex containing TBP and proteasomal ATPases. Based on our findings, we hypothesize that proteasomal ATPases are involved in transcriptional regulation in addition to proteolysis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验