Zuegg J, Gready J E
Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
Biochemistry. 1999 Oct 19;38(42):13862-76. doi: 10.1021/bi991469d.
Molecular dynamics simulations have been used to investigate the dynamical and structural behavior of a homology model of human prion protein HuPrP(90-230) generated from the NMR structure of the Syrian hamster prion protein ShPrP(90-231) and of ShPrP(<90-231) itself. These PrPs have a large number of charged residues on the protein surface. At the simulation pH 7, HuPrP(90-230) has a net charge of -1 eu from 15 positively and 14 negatively charged residues. Simulations for both PrPs, using the AMBER94 force field in a periodic box model with explicit water molecules, showed high sensitivity to the correct treatment of the electrostatic interactions. Highly unstable behavior of the structured region of the PrPs (127-230) was found using the truncation method, and stable trajectories could be achieved only by including all the long-range electrostatic interactions using the particle mesh Ewald (PME) method. The instability using the truncation method could not be reduced by adding sodium and chloride ions nor by replacing some of the sodium ions with calcium ions. The PME simulations showed, in accordance with NMR experiments with ShPrP and mouse PrP, a flexibly disordered N-terminal part, PrP(90-126), and a structured C-terminal part, PrP(127-230), which includes three alpha-helices and a short antiparallel beta-strand. The simulations showed some tendency for the highly conserved hydrophobic segment PrP(112-131) to adopt an alpha-helical conformation and for helix C to split at residues 212-213, a known disease-associated mutation site (Q212P). Three highly occupied salt bridges could be identified (E146/D144<-->R208, R164<-->D178, and R156<-->E196) which appear to be important for the stability of PrP by linking the stable main structured core (helices B and C) with the more flexible structured part (helix A and strands A and B). Two of these salt bridges involve disease-associated mutations (R208H and D178N). Decreased PrP stability shown by protein unfolding experiments on mutants of these residues and guanidinium chloride or temperature-induced unfolding studies indicating reduced stability at low pH are consistent with stabilization by salt bridges. The fact that electrostatic interactions, in general, and salt bridges, in particular, appear to play an important role in PrP stability has implications for PrP structure and stability at different pHs it may encounter physiologically during normal or abnormal recycling from the pH neutral membrane surface into endosomes or lysomes (acidic pHs) or in NMR experiments (5.2 for ShPrP and 4.5 for mouse PrP).
分子动力学模拟已被用于研究由叙利亚仓鼠朊病毒蛋白ShPrP(90 - 231)的核磁共振结构生成的人朊病毒蛋白HuPrP(90 - 230)同源模型以及ShPrP(<90 - 231)自身的动力学和结构行为。这些朊病毒蛋白在蛋白质表面有大量带电荷的残基。在模拟pH值为7时,HuPrP(90 - 230)有15个带正电荷和14个带负电荷的残基,净电荷为 -1静电单位。使用AMBER94力场在具有明确水分子的周期性盒子模型中对两种朊病毒蛋白进行模拟,结果表明对静电相互作用的正确处理具有高度敏感性。使用截断方法发现朊病毒蛋白(127 - 230)的结构区域具有高度不稳定的行为,只有通过使用粒子网格埃瓦尔德(PME)方法包含所有长程静电相互作用才能实现稳定的轨迹。使用截断方法时的不稳定性不会因添加钠离子和氯离子,也不会因用钙离子取代一些钠离子而降低。PME模拟结果表明,与对ShPrP和小鼠PrP的核磁共振实验一致,N端部分PrP(90 - 126)是灵活无序的,C端部分PrP(127 - 230)是结构化的,其中包括三个α螺旋和一个短的反平行β链。模拟结果显示,高度保守的疏水片段PrP(112 - 131)有形成α螺旋构象的趋势,并且螺旋C在残基212 - 213处分裂,这是一个已知的疾病相关突变位点(Q212P)。可以识别出三个高度占据的盐桥(E146/D144<-->R208、R164<-->D178和R156<-->E196),它们似乎通过将稳定的主要结构核心(螺旋B和C)与更灵活的结构部分(螺旋A以及链A和B)连接起来,对朊病毒蛋白的稳定性很重要。其中两个盐桥涉及疾病相关突变(R208H和D178N)。对这些残基的突变体进行蛋白质解折叠实验以及氯化胍或温度诱导的解折叠研究表明在低pH值下稳定性降低,这与盐桥的稳定作用一致。一般来说,静电相互作用,特别是盐桥,似乎在朊病毒蛋白稳定性中起重要作用,这一事实对于朊病毒蛋白在从pH中性膜表面正常或异常循环进入内体或溶酶体(酸性pH值)的生理过程中,或在核磁共振实验(ShPrP为5.2,小鼠PrP为4.5)中可能遇到的不同pH值下的结构和稳定性具有重要意义。