Holland I B, Blight M A
Institut de Genetique et Microbiologie, Batiment 409, Universite Paris-Sud, 91405, France.
J Mol Biol. 1999 Oct 22;293(2):381-99. doi: 10.1006/jmbi.1999.2993.
The approximately 27 kDa ABC-ATPase, an extraordinarily conserved, unique type of ATPase, acts as a machine to fuel the movement across membranes of almost any type of molecule, from large polypeptides to small ions, via many different membrane-spanning proteins. A particular ABC-ATPase must therefore be tailor-made to function in a complex with its cognate membrane protein, forming a transport pathway appropriate for a specific type of molecule, or in the case of some ABC-transporters, several types of molecule. Molecules to be transported recognise their own transporter, bind and switch on the ATPase, which in turn activates or opens the transport pathway. ABC-dependent transport can be inwards across the membrane, or outwards to the cell exterior, and the ABC-ATPase can fuel transport through pathways which may involve a classical channel (CFTR), a "gateway" mechanism through a proteinacious chamber spanning the bilayer, or conceivably via a pathway at the protein-lipid interface of the outside of the membrane domain. This may be the case for drugs transported by Pgp, a multidrug resistance transporter. In this review, we try to identify the common fundamental principles which unite all ABC-transporters, including the basis of specificity for different transported compounds (allocrites), the interactions between the ATPase and membrane domains, activation of the ATPase and the coupling of consequent conformational changes, to the final movement of an allocrite through a given transport pathway. We discuss the so far limited structural information for the intact ABC-transporter complex and the exciting information from the first crystal structure of an ABC-ATPase. Finally, the action of specific transporters, CFTR (Cl- transport), Pgp, MRP and LmrA, all transporting many different drug molecules and HlyB transporting a large protein toxin are discussed.
约27 kDa的ABC - ATP酶是一种极其保守的独特类型的ATP酶,它作为一种机制,通过许多不同的跨膜蛋白,为几乎任何类型的分子(从大的多肽到小离子)跨膜转运提供能量。因此,特定的ABC - ATP酶必须经过定制,以便与它的同源膜蛋白形成复合物发挥作用,形成适合特定类型分子的转运途径,或者对于某些ABC转运蛋白来说,形成适合几种类型分子的转运途径。待转运的分子识别其自身的转运蛋白,与之结合并开启ATP酶,ATP酶进而激活或打开转运途径。ABC依赖性转运可以是向内穿过膜,也可以是向外转运到细胞外,ABC - ATP酶可以通过可能涉及经典通道(CFTR)的途径、通过跨越双层的蛋白质腔室的“门户”机制,或者可以想象通过膜结构域外表面的蛋白质 - 脂质界面处的途径为转运提供能量。这可能是多药耐药转运蛋白Pgp转运药物的情况。在本综述中,我们试图确定统一所有ABC转运蛋白的共同基本原理,包括对不同转运化合物(配体)的特异性基础、ATP酶与膜结构域之间的相互作用、ATP酶的激活以及随之而来的构象变化与配体通过给定转运途径的最终转运之间的偶联。我们讨论了完整ABC转运蛋白复合物目前有限的结构信息以及来自ABC - ATP酶第一个晶体结构的令人兴奋的信息。最后,讨论了特定转运蛋白的作用,包括CFTR(氯离子转运)、Pgp、MRP和LmrA(均转运许多不同的药物分子)以及HlyB(转运一种大的蛋白质毒素)。