Suppr超能文献

Increased cardiovascular and metabolic tolerance to acute hypoxia in the rat with increased hemoglobin-O(2) affinity induced by Na-cyanate treatment.

作者信息

Taki J i, Masuda Y, Hayashi F, Fukuda Y

机构信息

Department of Internal Medicine III, School of Medicine, Chiba University, Chuo-ku, Chiba, 260-8670, Japan.

出版信息

Jpn J Physiol. 1999 Jun;49(3):257-65. doi: 10.2170/jjphysiol.49.257.

Abstract

Cyanate derivatives such as NaOCN have been known to increase the hypoxia tolerance of animals by increasing the affinity of hemoglobin (Hb) to O(2). To clarify the mechanism of this increase in hypoxia tolerance, we examined changes in metabolic rate and cardiovascular parameters during a hypoxia test in halothane-anesthetized, NaOCN-treated and spontaneously breathing rats (50 mg/kg/d S.C., 10 d). Control animals received saline. The capillary density in the skeletal muscle (sternocleidomastoid muscle), cardiac papillary muscle and medulla oblongata was also examined histologically. The Hb-O(2) affinity index, P(50), decreased from 38 (control rat) to 24 mmHg in NaOCN-treated rats. During hyperoxic gas breathing, the rat treated with NaOCN showed a significantly lower metabolic rate (V(.)O(2), V(.)CO(2)), higher cardiac stroke volume, slower heart rate, lower PvO(2), and lower O(2) extraction ratio than those in control rats. The NaOCN-treated rats exhibited well-maintained arterial blood pressure and a larger cardiac output response to reduction in FIO(2) to 0.10-0.08. The increase in O(2) extraction ratio with reduction in FIO(2) was larger in NaOCN-treated than in control rats. The circulatory and metabolic depressions at FIO(2) 0.05 were effectively attenuated in NaOCN-treated rats. The capillary density of the cardiac muscle and medulla oblongata but not the skeletal muscle was significantly higher in NaOCN-treated rats than in control rats. The greater hypoxia tolerance in NaOCN-treated rats is ascribed to the combined effects of left shift of Hb-O(2) dissociation curve, lower basal V(. )O(2), higher capillary density in the heart, and brain, and other adaptive mechanisms induced probably by prolonged tissue hypoxia.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验