Hannig M, Bott B
University of Kiel, Clinic of Operative Dentistry and Periodontology, Germany.
Dent Mater. 1999 Jul;15(4):275-81. doi: 10.1016/s0109-5641(99)00047-0.
The purpose of this in vitro study was to measure the pulp chamber temperature increase induced during composite resin polymerization with various visible light-curing units.
A Class II cavity was prepared in an extracted molar tooth, leaving a dentin layer 1 mm thick between pulp chamber and proximal cavity wall. A 2 mm composite resin layer was applied to the proximal box and light-cured with the selected curing units: Heliolux II (H; 320 mW/cm2), QHL 75 (Q; 505 mW/cm2), Astralis 5 (A; 515 mW/cm2), Optilux 500 (O; 670 mW/cm2), Elipar Highlight (EH; 730 mW/cm2), ADT 1000 PAC (P; 1196 mW/cm2). Light-curing took place for 40 s (H, A, Q, O, EH), 5 and 10 s (P). Measurement of pulp chamber temperature changes (starting temperature: 37.0 +/- 0.1 degrees C) during polymerization was performed with a K-type thermocouple positioned at the pulp-dentin junction. Mean values were calculated from 10 measurements with each light-curing unit. ANOVA and Dunnett t-test were used for statistical analyses.
Maximum temperature changes varied significantly depending on the light-curing unit used: 2.9 +/- 0.3 degrees C (H), 4.7 +/- 0.5 degrees C (A), 5.4 +/- 0.3 degrees C (P, 5 s), 5.6 +/- 0.4 degrees C (Q), 6.1 +/- 0.2 degrees C (EH, 2-step mode: 100 mW/cm2 over 10 s, 730 mW/cm2 over 30 s), 6.9 +/- 0.4 degrees C (EH), 7.3 +/- 0.3 degrees C (O), 7.8 +/- 0.9 degrees C (P, 10 s).
It is concluded that light-polymerization with curing units characterized by high energy output (A,EH,O,P,Q) causes significantly higher pulp chamber temperature changes as compared to the conventional curing light (H). Therefore, clinicians should be aware of the potential thermal hazard to the pulp which might result from visible-light curing of composite resins.
本体外研究的目的是测量使用各种可见光固化装置进行复合树脂聚合时引起的髓腔温度升高。
在一颗拔除的磨牙上制备II类洞形,在髓腔和邻面洞壁之间保留1mm厚的牙本质层。在邻面盒内涂抹2mm厚的复合树脂,并用选定的固化装置进行光固化:Heliolux II(H;320mW/cm²)、QHL 75(Q;505mW/cm²)、Astralis 5(A;515mW/cm²)、Optilux 500(O;670mW/cm²)、Elipar Highlight(EH;730mW/cm²)、ADT 1000 PAC(P;1196mW/cm²)。光固化时间为40s(H、A、Q、O、EH)、5s和10s(P)。使用置于髓腔-牙本质交界处的K型热电偶测量聚合过程中髓腔温度的变化(起始温度:37.0±0.1℃)。每个光固化装置进行10次测量并计算平均值。采用方差分析和Dunnett t检验进行统计学分析。
最大温度变化根据所使用的光固化装置不同而有显著差异:2.9±0.3℃(H)、4.7±0.5℃(A)、5.4±0.3℃(P,5s)、5.6±0.4℃(Q)、6.1±0.2℃(EH,两步模式:10s内100mW/cm²,30s内730mW/cm²)、6.9±0.4℃(EH)、7.3±0.3℃(O)、7.8±0.9℃(P,10s)。
得出结论,与传统固化灯(H)相比,使用高能量输出的固化装置(A、EH、O、P、Q)进行光聚合会导致髓腔温度变化显著更高。因此,临床医生应意识到复合树脂可见光固化可能对牙髓造成的潜在热危害。