Baines R A, Robinson S G, Fujioka M, Jaynes J B, Bate M
Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.
Curr Biol. 1999 Nov 4;9(21):1267-70. doi: 10.1016/s0960-9822(99)80510-7.
During the development of the nervous system embryonic neurons are incorporated into neural networks that underlie behaviour. For example, during embryogenesis in Drosophila, motor neurons in every body segment are wired into the circuitry that drives the simple peristaltic locomotion of the larva. Very little is known about the way in which the necessary central synapses are formed in such a network or how their properties are controlled. One possibility is that presynaptic and postsynaptic elements form relatively independently of each other. Alternatively, there might be an interaction between presynaptic and postsynaptic neurons that allows for adjustment and plasticity in the embryonic network. Here we have addressed this issue by analysing the role of synaptic transmission in the formation of synaptic inputs onto identified motorneurons as the locomotor circuitry is assembled in the Drosophila embryo. We targeted the expression of tetanus toxin light chain (TeTxLC) to single identified neurons using the GAL4 system. TeTxLC prevents the evoked release of neurotransmitter by enzymatically cleaving the synaptic-vesicle-associated protein neuronal-Synaptobrevin (n-Syb) [1]. Unexpectedly, we found that the cells that expressed TeTxLC, which were themselves incapable of evoked release, showed a dramatic reduction in synaptic input. We detected this reduction both electrophysiologically and ultrastructurally.
在神经系统发育过程中,胚胎神经元被纳入构成行为基础的神经网络。例如,在果蝇胚胎发育过程中,每个体节中的运动神经元被连接到驱动幼虫简单蠕动运动的电路中。对于在这样一个网络中如何形成必要的中枢突触或其特性如何被控制,人们知之甚少。一种可能性是,突触前和突触后元件相对独立地形成。或者,突触前和突触后神经元之间可能存在相互作用,从而使胚胎网络具有调节和可塑性。在这里,我们通过分析突触传递在果蝇胚胎中运动电路组装时对已识别运动神经元突触输入形成中的作用,来解决这个问题。我们使用GAL4系统将破伤风毒素轻链(TeTxLC)的表达靶向单个已识别的神经元。TeTxLC通过酶切突触小泡相关蛋白神经元突触融合蛋白(n-Syb)来阻止神经递质的诱发释放[1]。出乎意料的是,我们发现表达TeTxLC的细胞本身无法进行诱发释放,但其突触输入却显著减少。我们通过电生理和超微结构检测到了这种减少。