Sobrido-Cameán Daniel, Oswald Matthew C W, Bailey David M D, Mukherjee Amrita, Landgraf Matthias
Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
Front Cell Neurosci. 2023 Jan 13;16:1106593. doi: 10.3389/fncel.2022.1106593. eCollection 2022.
Neurons respond to changes in the levels of activity they experience in a variety of ways, including structural changes at pre- and postsynaptic terminals. An essential plasticity signal required for such activity-regulated structural adjustments are reactive oxygen species (ROS). To identify sources of activity-regulated ROS required for structural plasticity we used the Drosophila larval neuromuscular junction as a highly tractable experimental model system. For adjustments of presynaptic motor terminals, we found a requirement for both NADPH oxidases, Nox and dual oxidase (Duox), that are encoded in the Drosophila genome. This contrasts with the postsynaptic dendrites from which Nox is excluded. NADPH oxidases generate ROS to the extracellular space. Here, we show that two aquaporins, Bib and Drip, are necessary ROS conduits in the presynaptic motoneuron for activity regulated, NADPH oxidase dependent changes in presynaptic motoneuron terminal growth. Our data further suggest that different aspects of neuronal activity-regulated structural changes might be regulated by different ROS sources: changes in bouton number require both NADPH oxidases, while activity-regulated changes in the number of active zones might be modulated by other sources of ROS. Overall, our results show NADPH oxidases as important enzymes for mediating activity-regulated plasticity adjustments in neurons.
神经元以多种方式对其所经历的活动水平变化做出反应,包括突触前和突触后终端的结构变化。这种活动调节的结构调整所需的一种重要可塑性信号是活性氧(ROS)。为了确定结构可塑性所需的活动调节ROS的来源,我们使用果蝇幼虫神经肌肉接头作为一个高度易处理的实验模型系统。对于突触前运动终端的调整,我们发现果蝇基因组中编码的两种NADPH氧化酶,即Nox和双氧化酶(Duox)都有需求。这与排除了Nox的突触后树突形成对比。NADPH氧化酶将ROS产生到细胞外空间。在这里,我们表明两种水通道蛋白Bib和Drip是突触前运动神经元中活性调节的、依赖NADPH氧化酶的突触前运动神经元终端生长变化的必要ROS通道。我们的数据进一步表明,神经元活动调节的结构变化的不同方面可能由不同的ROS来源调节:突触小体数量的变化需要两种NADPH氧化酶,而活性区数量的活动调节变化可能由其他ROS来源调节。总体而言,我们的结果表明NADPH氧化酶是介导神经元中活动调节的可塑性调整的重要酶。