Plamondon P, Brochu D, Thomas S, Fradette J, Gauthier L, Vaillancourt K, Buckley N, Frenette M, Vadeboncoeur C
Groupe de Recherche en Ecologie Buccale, Département de Biochimie, Faculté des Sciences et de Génie and Faculté de Médecine Dentaire, Université Laval, Cité Universitaire, Québec, Québec, Canada G1K 7P4.
J Bacteriol. 1999 Nov;181(22):6914-21. doi: 10.1128/JB.181.22.6914-6921.1999.
In gram-positive bacteria, the HPr protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) can be phosphorylated on a histidine residue at position 15 (His(15)) by enzyme I (EI) of the PTS and on a serine residue at position 46 (Ser(46)) by an ATP-dependent protein kinase (His approximately P and Ser-P, respectively). We have isolated from Streptococcus salivarius ATCC 25975, by independent selection from separate cultures, two spontaneous mutants (Ga3.78 and Ga3.14) that possess a missense mutation in ptsH (the gene encoding HPr) replacing the methionine at position 48 by a valine. The mutation did not prevent the phosphorylation of HPr at His(15) by EI nor the phosphorylation at Ser(46) by the ATP-dependent HPr kinase. The levels of HPr(Ser-P) in glucose-grown cells of the parental and mutant Ga3.78 were virtually the same. However, mutant cells growing on glucose produced two- to threefold less HPr(Ser-P)(His approximately P) than the wild-type strain, while the levels of free HPr and HPr(His approximately P) were increased 18- and 3-fold, respectively. The mutants grew as well as the wild-type strain on PTS sugars (glucose, fructose, and mannose) and on the non-PTS sugars lactose and melibiose. However, the growth rate of both mutants on galactose, also a non-PTS sugar, decreased rapidly with time. The M48V substitution had only a minor effect on the repression of alpha-galactosidase, beta-galactosidase, and galactokinase by glucose, but this mutation abolished diauxie by rendering cells unable to prevent the catabolism of a non-PTS sugar (lactose, galactose, and melibiose) when glucose was available. The results suggested that the capacity of the wild-type cells to preferentially metabolize glucose over non-PTS sugars resulted mainly from inhibition of the catabolism of these secondary energy sources via a HPr-dependent mechanism. This mechanism was activated following glucose but not lactose metabolism, and it did not involve HPr(Ser-P) as the only regulatory molecule.
在革兰氏阳性菌中,磷酸烯醇丙酮酸:糖磷酸转移酶系统(PTS)的HPr蛋白可被PTS的酶I(EI)在第15位组氨酸残基(His(15))上磷酸化,并被一种ATP依赖性蛋白激酶在第46位丝氨酸残基(Ser(46))上磷酸化(分别为HisP和Ser-P)。我们从唾液链球菌ATCC 25975中,通过从不同培养物中独立筛选,分离出两个自发突变体(Ga3.78和Ga3.14),它们在ptsH(编码HPr的基因)中存在一个错义突变,将第48位的甲硫氨酸替换为缬氨酸。该突变并不妨碍EI对HPr在His(15)处的磷酸化,也不妨碍ATP依赖性HPr激酶对Ser(46)的磷酸化。亲本菌株和突变体Ga3.78在葡萄糖培养基中生长的细胞中,HPr(Ser-P)的水平几乎相同。然而,在葡萄糖上生长的突变体细胞产生的HPr(Ser-P)(HisP)比野生型菌株少两到三倍,而游离HPr和HPr(His~P)的水平分别增加了18倍和3倍。这些突变体在PTS糖类(葡萄糖、果糖和甘露糖)以及非PTS糖类乳糖和蜜二糖上的生长情况与野生型菌株相同。然而,这两个突变体在半乳糖(也是一种非PTS糖类)上的生长速率会随着时间迅速下降。M48V替换对葡萄糖对α-半乳糖苷酶、β-半乳糖苷酶和半乳糖激酶的阻遏作用只有轻微影响,但该突变通过使细胞在有葡萄糖时无法阻止非PTS糖类(乳糖、半乳糖和蜜二糖)的分解代谢,从而消除了二次生长现象。结果表明,野生型细胞优先代谢葡萄糖而非非PTS糖类的能力主要源于通过一种依赖HPr的机制对这些二次能源分解代谢的抑制。这种机制在葡萄糖而非乳糖代谢后被激活,并且它并不涉及HPr(Ser-P)作为唯一的调节分子。