Suppr超能文献

唾液链球菌HPr蛋白第48位甲硫氨酸被缬氨酸取代所产生的表型后果。

Phenotypic consequences resulting from a methionine-to-valine substitution at position 48 in the HPr protein of Streptococcus salivarius.

作者信息

Plamondon P, Brochu D, Thomas S, Fradette J, Gauthier L, Vaillancourt K, Buckley N, Frenette M, Vadeboncoeur C

机构信息

Groupe de Recherche en Ecologie Buccale, Département de Biochimie, Faculté des Sciences et de Génie and Faculté de Médecine Dentaire, Université Laval, Cité Universitaire, Québec, Québec, Canada G1K 7P4.

出版信息

J Bacteriol. 1999 Nov;181(22):6914-21. doi: 10.1128/JB.181.22.6914-6921.1999.

Abstract

In gram-positive bacteria, the HPr protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) can be phosphorylated on a histidine residue at position 15 (His(15)) by enzyme I (EI) of the PTS and on a serine residue at position 46 (Ser(46)) by an ATP-dependent protein kinase (His approximately P and Ser-P, respectively). We have isolated from Streptococcus salivarius ATCC 25975, by independent selection from separate cultures, two spontaneous mutants (Ga3.78 and Ga3.14) that possess a missense mutation in ptsH (the gene encoding HPr) replacing the methionine at position 48 by a valine. The mutation did not prevent the phosphorylation of HPr at His(15) by EI nor the phosphorylation at Ser(46) by the ATP-dependent HPr kinase. The levels of HPr(Ser-P) in glucose-grown cells of the parental and mutant Ga3.78 were virtually the same. However, mutant cells growing on glucose produced two- to threefold less HPr(Ser-P)(His approximately P) than the wild-type strain, while the levels of free HPr and HPr(His approximately P) were increased 18- and 3-fold, respectively. The mutants grew as well as the wild-type strain on PTS sugars (glucose, fructose, and mannose) and on the non-PTS sugars lactose and melibiose. However, the growth rate of both mutants on galactose, also a non-PTS sugar, decreased rapidly with time. The M48V substitution had only a minor effect on the repression of alpha-galactosidase, beta-galactosidase, and galactokinase by glucose, but this mutation abolished diauxie by rendering cells unable to prevent the catabolism of a non-PTS sugar (lactose, galactose, and melibiose) when glucose was available. The results suggested that the capacity of the wild-type cells to preferentially metabolize glucose over non-PTS sugars resulted mainly from inhibition of the catabolism of these secondary energy sources via a HPr-dependent mechanism. This mechanism was activated following glucose but not lactose metabolism, and it did not involve HPr(Ser-P) as the only regulatory molecule.

摘要

在革兰氏阳性菌中,磷酸烯醇丙酮酸:糖磷酸转移酶系统(PTS)的HPr蛋白可被PTS的酶I(EI)在第15位组氨酸残基(His(15))上磷酸化,并被一种ATP依赖性蛋白激酶在第46位丝氨酸残基(Ser(46))上磷酸化(分别为HisP和Ser-P)。我们从唾液链球菌ATCC 25975中,通过从不同培养物中独立筛选,分离出两个自发突变体(Ga3.78和Ga3.14),它们在ptsH(编码HPr的基因)中存在一个错义突变,将第48位的甲硫氨酸替换为缬氨酸。该突变并不妨碍EI对HPr在His(15)处的磷酸化,也不妨碍ATP依赖性HPr激酶对Ser(46)的磷酸化。亲本菌株和突变体Ga3.78在葡萄糖培养基中生长的细胞中,HPr(Ser-P)的水平几乎相同。然而,在葡萄糖上生长的突变体细胞产生的HPr(Ser-P)(HisP)比野生型菌株少两到三倍,而游离HPr和HPr(His~P)的水平分别增加了18倍和3倍。这些突变体在PTS糖类(葡萄糖、果糖和甘露糖)以及非PTS糖类乳糖和蜜二糖上的生长情况与野生型菌株相同。然而,这两个突变体在半乳糖(也是一种非PTS糖类)上的生长速率会随着时间迅速下降。M48V替换对葡萄糖对α-半乳糖苷酶、β-半乳糖苷酶和半乳糖激酶的阻遏作用只有轻微影响,但该突变通过使细胞在有葡萄糖时无法阻止非PTS糖类(乳糖、半乳糖和蜜二糖)的分解代谢,从而消除了二次生长现象。结果表明,野生型细胞优先代谢葡萄糖而非非PTS糖类的能力主要源于通过一种依赖HPr的机制对这些二次能源分解代谢的抑制。这种机制在葡萄糖而非乳糖代谢后被激活,并且它并不涉及HPr(Ser-P)作为唯一的调节分子。

相似文献

6
Regulation of ATP-dependent P-(Ser)-HPr formation in Streptococcus mutans and Streptococcus salivarius.
J Bacteriol. 1995 May;177(10):2751-9. doi: 10.1128/jb.177.10.2751-2759.1995.
9
Catabolite repression and inducer control in Gram-positive bacteria.
Microbiology (Reading). 1996 Feb;142 ( Pt 2):217-230. doi: 10.1099/13500872-142-2-217.
10
Streptococci and lactococci synthesize large amounts of HPr(Ser-P)(His~P).
Can J Microbiol. 2008 Nov;54(11):941-9. doi: 10.1139/w08-085.

引用本文的文献

1
Transcriptional activator YesS is stimulated by histidine-phosphorylated HPr of the Bacillus subtilis phosphotransferase system.
J Biol Chem. 2009 Oct 9;284(41):28188-28197. doi: 10.1074/jbc.M109.046334. Epub 2009 Aug 3.
3
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria.
Microbiol Mol Biol Rev. 2006 Dec;70(4):939-1031. doi: 10.1128/MMBR.00024-06.

本文引用的文献

1
The D-galactose oxidase of Polyporus circinatus.
J Biol Chem. 1962 Sep;237:2736-43.
2
The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase.
Mol Microbiol. 1999 Jan;31(1):59-66. doi: 10.1046/j.1365-2958.1999.01146.x.
3
4
The HPr(Ser) kinase of Streptococcus salivarius: purification, properties, and cloning of the hprK gene.
J Bacteriol. 1999 Feb;181(3):709-17. doi: 10.1128/JB.181.3.709-717.1999.
5
Topography of the interaction of HPr(Ser) kinase with HPr.
Biochemistry. 1998 Aug 25;37(34):11762-70. doi: 10.1021/bi980455p.
7
Identification of a homolog of CcpA catabolite repressor protein in Streptococcus mutans.
Infect Immun. 1998 May;66(5):2085-92. doi: 10.1128/IAI.66.5.2085-2092.1998.
8
A novel protein kinase that controls carbon catabolite repression in bacteria.
Mol Microbiol. 1998 Mar;27(6):1157-69. doi: 10.1046/j.1365-2958.1998.00747.x.
9
New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression.
Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1823-8. doi: 10.1073/pnas.95.4.1823.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验