Suppr超能文献

革兰氏阳性菌中的分解代谢物阻遏和诱导物控制

Catabolite repression and inducer control in Gram-positive bacteria.

作者信息

Saier Milton H, Chauvaux Sylvie, Cook Gregory M, Deutscher Josef, Paulsen Ian T, Reizer Jonathan, Ye Jing-Jing

机构信息

Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA.

出版信息

Microbiology (Reading). 1996 Feb;142 ( Pt 2):217-230. doi: 10.1099/13500872-142-2-217.

Abstract

Results currently available clearly indicate that the metabolite-activated protein kinase-mediated phosphorylation of Ser-46 in HPr plays a key role in catabolite repression and the control of inducer levels in low-GC Gram-positive bacteria. This protein kinase is not found in enteric bacteria such as E. coli and Salmonella typhimurium where an entirely different PTS-mediated regulatory mechanism is responsible for catabolite repression and inducer concentration control. In Table 2 these two mechanistically dissimilar but functionally related processes are compared (Saier et al., 1995b). In Gram-negative enteric bacteria, an external sugar is sensed by the sugar-recognition constituent of an Enzyme II complex of the PTS (IIC), and a dephosphorylating signal is transmitted via the Enzyme IIB/HPr proteins to the central regulatory protein, IIAGlc. Targets regulated include (1) permeases specific for lactose, maltose, melibiose and raffinose, (2) catabolic enzymes such as glycerol kinase that generate cytoplasmic inducers, and (3) the cAMP biosynthetic enzyme, adenylate cyclase that mediates catabolite repression (Saier, 1989, 1993). In low-GC Gram-positive bacteria, cytoplasmic phosphorylated sugar metabolites are sensed by the HPr kinase which is allostericlaly activated. HPr becomes phosphorylated on Ser-46, and this phosphorylated derivative regulates the activities of its target proteins. These targets include (1) the PTS, (2) non-PTS permeases (both of which are inhibited) and (3) a cytoplasmic sugar-P phosphatase which is activated to reduce cytoplasmic inducer levels. Other important targets of HPr(ser-P) action are (4) the CcpA protein and probably (5) the CepB transcription factor. These two proteins together are believed to determine the intensity of catabolite repression. Their relative importance depends on physiological conditions. Both proteins may respond to the cytoplasmic concentration of HPr(ser-P) and appropriate metabolites. CepA possibly binds sugar metabolites such as FBP as well as HPr(ser-P). Because HPr(his-P, ser-P) does not bind to CepA, the regulatory cascade is also sensitive to the external PTS sugar concentration. Mutational analyses (unpublished results) suggest that CepA may bind to a site that includes His-15. Interestingly, both the CepA protein in the Gram-positive bacterium, B. subtilis, and glycerol kinase in the Gram-negative bacterium, E. coli, sense both a PTS protein and a cytoplasmic metabolic intermediate. The same may be true of target permeases and enzymes in both types of organisms, but this possibility has not yet been tested. The parallels between the Gram-negative and Gram-positive bacterial regulatory systems are superficial at the mechanistic level but fundamental at the functional level. Thus, the PTS participates in regulation in both cases, and phosphorylation of its protein constituents plays key roles. However, the stimuli sensed, the transmission mechanisms, the central PTS regulatory proteins that effect allosteric regulation, and some of the target proteins are completely different. It seems clear that these two transmission mechanisms evolved independently. They provide a prime example of functional convergence.

摘要

目前可得的结果清楚地表明,在低GC革兰氏阳性细菌中,代谢物激活的蛋白激酶介导的HPr中Ser-46的磷酸化在分解代谢物阻遏和诱导物水平控制中起关键作用。在诸如大肠杆菌和鼠伤寒沙门氏菌等肠道细菌中未发现这种蛋白激酶,在这些细菌中,一种完全不同的磷酸转移酶系统(PTS)介导的调节机制负责分解代谢物阻遏和诱导物浓度控制。在表2中对这两个机制不同但功能相关的过程进行了比较(赛尔等人,1995b)。在革兰氏阴性肠道细菌中,外部糖类由PTS的酶II复合物(IIC)的糖识别成分感知,去磷酸化信号通过酶IIB/HPr蛋白传递给中央调节蛋白IIAGlc。受调节的靶点包括:(1)对乳糖、麦芽糖、蜜二糖和棉子糖特异的通透酶;(2)产生细胞质诱导物的分解代谢酶,如甘油激酶;(3)介导分解代谢物阻遏的cAMP生物合成酶,腺苷酸环化酶(赛尔,1989年,1993年)。在低GC革兰氏阳性细菌中,细胞质磷酸化的糖类代谢物由被别构激活的HPr激酶感知。HPr在Ser-46上被磷酸化,这种磷酸化衍生物调节其靶蛋白的活性。这些靶点包括:(1)PTS;(2)非PTS通透酶(二者均被抑制);(3)一种细胞质糖磷酸酶,其被激活以降低细胞质诱导物水平。HPr(丝氨酸-P)作用的其他重要靶点是:(4)CcpA蛋白,可能还有(5)CepB转录因子。据信这两种蛋白共同决定分解代谢物阻遏的强度。它们的相对重要性取决于生理条件。这两种蛋白可能对HPr(丝氨酸-P)和合适的代谢物的细胞质浓度作出反应。CepA可能结合诸如FBP以及HPr(丝氨酸-P)等糖类代谢物。因为HPr(组氨酸-P,丝氨酸-P)不与CepA结合,所以调节级联反应也对外部PTS糖类浓度敏感。突变分析(未发表的结果)表明CepA可能结合到一个包括His-15的位点。有趣的是,革兰氏阳性细菌枯草芽孢杆菌中的CepA蛋白和革兰氏阴性细菌大肠杆菌中的甘油激酶都能感知一种PTS蛋白和一种细胞质代谢中间物。两种类型生物体中的靶通透酶和酶可能也是如此,但这种可能性尚未得到验证。革兰氏阴性和革兰氏阳性细菌调节系统之间的相似之处在机制层面是表面的,但在功能层面是基本的。因此,PTS在两种情况下都参与调节,其蛋白成分的磷酸化起关键作用。然而,所感知的刺激、传递机制、影响别构调节的中央PTS调节蛋白以及一些靶蛋白是完全不同的。很明显,这两种传递机制是独立进化的。它们提供了一个功能趋同的典型例子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验