Mitchell KA, Bolstad PV, Vose JM
Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue N., St. Paul, MN 55108, USA.
Tree Physiol. 1999 Nov 1;19(13):861-870. doi: 10.1093/treephys/19.13.861.
We measured variations in leaf dark respiration rate (Rd) and leaf nitrogen (N) across species, canopy light environment, and elevation for 18 co-occurring deciduous hardwood species in the southern Appalachian mountains of western North Carolina. Our overall objective was to estimate leaf respiration rates under typical conditions and to determine how they varied within and among species. Mean dark respiration rate at 20 degrees C (Rd,mass, micromol CO2 per kg leaf dry mass per s) for all 18 species was 7.31 micromol per kg per s. Mean Rd,mass of individual species varied from 5.17 micromol per kg per s for Quercus coccinea Muenchh. to 8.25 micromol per kg per s for Liriodendron tulipifera L. Dark respiration rate varied by leaf canopy position and was higher in leaves collected from high-light environments. When expressed on an area basis, dark respiration rate (Rd,area, micromol CO2 per kg leaf dry area per s) showed a strong linear relationship with the predictor variables leaf nitrogen (Narea, g N per square m leaf area) and leaf structure (LMA, g leaf dry mass per square m leaf area) (r squared = 0.62). This covariance was largely a result of changes in leaf structure with canopy position; smaller thicker leaves occur at upper canopy positions in high-light environments. Mass-based expression of leaf nitrogen and dark respiration rate showed that nitrogen concentration (Nmass, mg N per g leaf dry mass) was only moderately predictive of variation in Rd,mass for all leaves pooled (r squared = 0.11), within species, or among species. We found distinct elevational trends, with both Rd,mass and Nmass higher in trees originating from high-elevation, cooler growth environments. Consideration of interspecies differences, vertical gradients in canopy light environment, and elevation, may improve our ability to scale leaf respiration to the canopy in forest process models.
我们测量了北卡罗来纳州西部阿巴拉契亚山脉南部18种共生落叶硬木树种的叶片暗呼吸速率(Rd)和叶片氮含量(N)在物种、冠层光照环境和海拔之间的变化。我们的总体目标是估计典型条件下的叶片呼吸速率,并确定其在物种内部和物种之间的变化情况。所有18个物种在20摄氏度时的平均暗呼吸速率(Rd,mass,每千克叶片干质量每秒微摩尔二氧化碳)为7.31微摩尔每千克每秒。单个物种的平均Rd,mass从猩红栎(Quercus coccinea Muenchh.)的5.17微摩尔每千克每秒到北美鹅掌楸(Liriodendron tulipifera L.)的8.25微摩尔每千克每秒不等。暗呼吸速率因叶冠层位置而异,从高光环境中采集的叶片中暗呼吸速率更高。以面积为基础表示时,暗呼吸速率(Rd,area,每平方米叶片干面积每秒微摩尔二氧化碳)与预测变量叶片氮含量(Narea,每平方米叶面积克氮)和叶片结构(LMA,每平方米叶面积克叶片干质量)呈现出很强的线性关系(决定系数r² = 0.62)。这种协方差很大程度上是叶结构随冠层位置变化的结果;在高光环境下,较小且较厚的叶片出现在树冠上部位置。基于质量的叶片氮含量和暗呼吸速率表示表明,对于所有汇总叶片、物种内部或物种之间,氮浓度(Nmass,每克叶片干质量毫克氮)对Rd,mass变化的预测能力仅为中等(决定系数r² = 0.11)。我们发现了明显的海拔趋势,来自高海拔、较凉爽生长环境的树木中Rd,mass和Nmass都更高。考虑物种间差异、冠层光照环境的垂直梯度和海拔,可能会提高我们在森林过程模型中将叶片呼吸扩展到树冠的能力。