Suppr超能文献

主动脉根部的变形动力学:模式与生理决定因素

Deformational dynamics of the aortic root: modes and physiologic determinants.

作者信息

Dagum P, Green G R, Nistal F J, Daughters G T, Timek T A, Foppiano L E, Bolger A F, Ingels N B, Miller D C

机构信息

Department of Cardiovascular and Thoracic Surgery, Stanford University School of Medicine, Palo Alto, California 94305-5247, USA.

出版信息

Circulation. 1999 Nov 9;100(19 Suppl):II54-62. doi: 10.1161/01.cir.100.suppl_2.ii-54.

Abstract

BACKGROUND

Current surgical methods for treating aortic valve and aortic root pathology vary widely, and the basis for selecting one repair or replacement alternative over another continues to evolve. More precise knowledge of the interaction between normal aortic root dynamics and aortic valve mechanics may clarify the implications of various surgical procedures on long-term valve function and durability.

METHODS AND RESULTS

To investigate the role of aortic root dynamics on valve function, we studied the deformation modes of the left, right, and noncoronary aortic root regions during isovolumic contraction, ejection, isovolumic relaxation, and diastole. Radiopaque markers were implanted at the top of the 3 commissures (sinotubular ridge) and at the annular base of the 3 sinuses in 6 adult sheep. After a 1-week recovery, ECG and left ventricular and aortic pressures were recorded in conscious, sedated animals, and the 3D marker coordinates were computed from biplane videofluorograms (60 Hz). Left ventricular preload, contractility, and afterload were independently manipulated to assess the effects of changing hemodynamics on aortic root 3D dynamic deformation. The ovine aortic root undergoes complex, asymmetric deformations during the various phases of the cardiac cycle, including aortoventricular and sinotubular junction strain and aortic root elongation, compression, shear, and torsional deformation. These deformations were not homogeneous among the left, right, and noncoronary regions. Furthermore, changes in left ventricular volume, pressure, and contractility affected the degree of deformation in a nonuniform manner in the 3 regions studied, and these effects varied during isovolumic contraction, ejection, isovolumic relaxation, and diastole.

CONCLUSIONS

These complex 3D aortic root deformations probably minimize aortic cusp stresses by creating optimal cusp loading conditions and minimizing transvalvular turbulence. Aortic valve repair techniques or methods of replacement using unstented autograft, allograft, or xenograft tissue valves that best preserve this normal pattern of aortic root dynamics should translate into a lower risk of long-term cusp deterioration.

摘要

背景

目前治疗主动脉瓣和主动脉根部病变的手术方法差异很大,选择一种修复或置换方案而非另一种的依据也在不断演变。对正常主动脉根部动力学与主动脉瓣力学之间相互作用的更精确了解,可能会阐明各种手术操作对长期瓣膜功能和耐久性的影响。

方法与结果

为了研究主动脉根部动力学对瓣膜功能的作用,我们研究了等容收缩期、射血期、等容舒张期和舒张期左、右和无冠主动脉根部区域的变形模式。在6只成年绵羊的3个瓣叶顶部(窦管嵴)和3个窦的瓣环基部植入不透射线的标记物。经过1周的恢复后,在清醒、镇静的动物中记录心电图、左心室和主动脉压力,并从双平面视频荧光造影(60Hz)计算3D标记物坐标。独立调节左心室前负荷、收缩力和后负荷,以评估血流动力学变化对主动脉根部3D动态变形的影响。在心动周期的各个阶段,羊主动脉根部会经历复杂的、不对称的变形,包括主动脉心室和窦管交界处的应变以及主动脉根部的伸长、压缩、剪切和扭转变形。这些变形在左、右和无冠区域之间并不均匀。此外,左心室容积、压力和收缩力的变化以非均匀的方式影响所研究的3个区域的变形程度,并且这些影响在等容收缩期、射血期、等容舒张期和舒张期有所不同。

结论

这些复杂的主动脉根部3D变形可能通过创造最佳的瓣叶负荷条件并最小化跨瓣湍流来使主动脉瓣叶应力最小化。使用无支架自体移植物、同种异体移植物或异种移植物组织瓣膜的主动脉瓣修复技术或置换方法,若能最好地保留这种正常的主动脉根部动力学模式,应能降低长期瓣叶退化的风险。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验