文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

主动脉瓣装置的多尺度结构与功能

Multiscale structure and function of the aortic valve apparatus.

作者信息

El-Nashar Hussam, Sabry Malak, Tseng Yuan-Tsan, Francis Nadine, Latif Najma, Parker Kim H, Moore James E, Yacoub Magdi H

机构信息

Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt.

Department of Bioengineering, Imperial College London, London, United Kingdom.

出版信息

Physiol Rev. 2024 Oct 1;104(4):1487-1532. doi: 10.1152/physrev.00038.2022. Epub 2023 Sep 21.


DOI:10.1152/physrev.00038.2022
PMID:37732828
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11495199/
Abstract

Whereas studying the aortic valve in isolation has facilitated the development of life-saving procedures and technologies, the dynamic interplay of the aortic valve and its surrounding structures is vital to preserving their function across the wide range of conditions encountered in an active lifestyle. Our view is that these structures should be viewed as an integrated functional unit, here referred to as the aortic valve apparatus (AVA). The coupling of the aortic valve and root, left ventricular outflow tract, and blood circulation is crucial for AVA's functions: unidirectional flow out of the left ventricle, coronary perfusion, reservoir function, and support of left ventricular function. In this review, we explore the multiscale biological and physical phenomena that underlie the simultaneous fulfillment of these functions. A brief overview of the tools used to investigate the AVA, such as medical imaging modalities, experimental methods, and computational modeling, specifically fluid-structure interaction (FSI) simulations, is included. Some pathologies affecting the AVA are explored, and insights are provided on treatments and interventions that aim to maintain quality of life. The concepts explained in this article support the idea of AVA being an integrated functional unit and help identify unanswered research questions. Incorporating phenomena through the molecular, micro, meso, and whole tissue scales is crucial for understanding the sophisticated normal functions and diseases of the AVA.

摘要

虽然孤立地研究主动脉瓣促进了挽救生命的手术和技术的发展,但主动脉瓣及其周围结构的动态相互作用对于在积极生活方式中遇到的各种情况下维持其功能至关重要。我们认为,这些结构应被视为一个整合的功能单元,在此称为主动脉瓣装置(AVA)。主动脉瓣与根部、左心室流出道和血液循环的耦合对于AVA的功能至关重要:左心室的单向流出、冠状动脉灌注、储器功能以及对左心室功能的支持。在这篇综述中,我们探讨了这些功能同时实现所基于的多尺度生物学和物理现象。还简要概述了用于研究AVA的工具,如医学成像模态、实验方法和计算建模,特别是流固耦合(FSI)模拟。探讨了一些影响AVA的病理情况,并提供了旨在维持生活质量的治疗和干预措施的见解。本文所解释的概念支持AVA作为一个整合功能单元的观点,并有助于确定未解决的研究问题。通过分子、微观、介观和全组织尺度纳入各种现象对于理解AVA复杂的正常功能和疾病至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/5693156f2613/physrev.00038.2022_f041.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/861b389c69e4/prv-00038-2022r01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/deff5a147d44/physrev.00038.2022_f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/2e9de0df79fa/physrev.00038.2022_f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/f5d3f9403f94/physrev.00038.2022_f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/3d0f5767b38c/physrev.00038.2022_f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/a544f56196ce/physrev.00038.2022_f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/a906aecc631c/physrev.00038.2022_f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/d2d94c421c3a/physrev.00038.2022_f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/d80da061c1a2/physrev.00038.2022_f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/ffc4b7b0cee2/physrev.00038.2022_f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/edbfc4ca742d/physrev.00038.2022_f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/a43a64b1036b/physrev.00038.2022_f011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/2b08576a3a20/physrev.00038.2022_f012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/abf2149e5240/physrev.00038.2022_f013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/25da6feef9e6/physrev.00038.2022_f014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/2c308492aa79/physrev.00038.2022_f015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/bc27fb2fdfab/physrev.00038.2022_f016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/0a4f85e7db89/physrev.00038.2022_f017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/0a01242a5ad1/physrev.00038.2022_f018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/2ffcdde117d9/physrev.00038.2022_f019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/06dce35339ee/physrev.00038.2022_f020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/365b584fd45e/physrev.00038.2022_f021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/c09715839e05/physrev.00038.2022_f022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/05664819afbb/physrev.00038.2022_f023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/92c7b77a54f5/physrev.00038.2022_f024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/0b285eabef53/physrev.00038.2022_f025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/aec58de5d89b/physrev.00038.2022_f026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/793d4392ea09/physrev.00038.2022_f027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/cfd6fd4697c2/physrev.00038.2022_f028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/1f624ee4d0b0/physrev.00038.2022_f029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/0ef331327a62/physrev.00038.2022_f030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/52db7ac84a59/physrev.00038.2022_f031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/05efd5a9dd37/physrev.00038.2022_f032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/ebd57a75b78c/physrev.00038.2022_f033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/7e98340b1bff/physrev.00038.2022_f034.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/9beaa1259943/physrev.00038.2022_f035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/3d3f89dfb284/physrev.00038.2022_f036.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/da35b89d279e/physrev.00038.2022_f037.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/d96881e4822d/physrev.00038.2022_f038.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/95fa0fd198f3/physrev.00038.2022_f039.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/3446dba2dd31/physrev.00038.2022_f040.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/5693156f2613/physrev.00038.2022_f041.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/861b389c69e4/prv-00038-2022r01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/deff5a147d44/physrev.00038.2022_f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/2e9de0df79fa/physrev.00038.2022_f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/f5d3f9403f94/physrev.00038.2022_f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/3d0f5767b38c/physrev.00038.2022_f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/a544f56196ce/physrev.00038.2022_f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/a906aecc631c/physrev.00038.2022_f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/d2d94c421c3a/physrev.00038.2022_f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/d80da061c1a2/physrev.00038.2022_f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/ffc4b7b0cee2/physrev.00038.2022_f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/edbfc4ca742d/physrev.00038.2022_f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/a43a64b1036b/physrev.00038.2022_f011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/2b08576a3a20/physrev.00038.2022_f012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/abf2149e5240/physrev.00038.2022_f013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/25da6feef9e6/physrev.00038.2022_f014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/2c308492aa79/physrev.00038.2022_f015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/bc27fb2fdfab/physrev.00038.2022_f016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/0a4f85e7db89/physrev.00038.2022_f017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/0a01242a5ad1/physrev.00038.2022_f018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/2ffcdde117d9/physrev.00038.2022_f019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/06dce35339ee/physrev.00038.2022_f020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/365b584fd45e/physrev.00038.2022_f021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/c09715839e05/physrev.00038.2022_f022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/05664819afbb/physrev.00038.2022_f023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/92c7b77a54f5/physrev.00038.2022_f024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/0b285eabef53/physrev.00038.2022_f025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/aec58de5d89b/physrev.00038.2022_f026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/793d4392ea09/physrev.00038.2022_f027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/cfd6fd4697c2/physrev.00038.2022_f028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/1f624ee4d0b0/physrev.00038.2022_f029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/0ef331327a62/physrev.00038.2022_f030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/52db7ac84a59/physrev.00038.2022_f031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/05efd5a9dd37/physrev.00038.2022_f032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/ebd57a75b78c/physrev.00038.2022_f033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/7e98340b1bff/physrev.00038.2022_f034.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/9beaa1259943/physrev.00038.2022_f035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/3d3f89dfb284/physrev.00038.2022_f036.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/da35b89d279e/physrev.00038.2022_f037.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/d96881e4822d/physrev.00038.2022_f038.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/95fa0fd198f3/physrev.00038.2022_f039.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/3446dba2dd31/physrev.00038.2022_f040.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f00/11495199/5693156f2613/physrev.00038.2022_f041.jpg

相似文献

[1]
Multiscale structure and function of the aortic valve apparatus.

Physiol Rev. 2024-10-1

[2]
Evaluation of aortic valve stenosis using cardiovascular magnetic resonance: comparison of an original semiautomated analysis of phase-contrast cardiovascular magnetic resonance with Doppler echocardiography.

Circ Cardiovasc Imaging. 2012-7-13

[3]
Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.

Cardiovasc Eng Technol. 2016-12

[4]
Effects of Normal Variation in the Rotational Position of the Aortic Root on Hemodynamics and Tissue Biomechanics of the Thoracic Aorta.

Cardiovasc Eng Technol. 2020-2

[5]
A numerical study of the hemodynamic effect of the aortic valve on coronary flow.

Biomech Model Mechanobiol. 2017-9-19

[6]
Validation and Extension of a Fluid-Structure Interaction Model of the Healthy Aortic Valve.

Cardiovasc Eng Technol. 2018-12

[7]
Numerical characterization of hemodynamics conditions near aortic valve after implantation of Left Ventricular Assist Device.

Math Biosci Eng. 2011-7

[8]
Systolic fluid-structure interaction model of the congenitally bicuspid aortic valve: assessment of modelling requirements.

Comput Methods Biomech Biomed Engin. 2015

[9]
Progressive Calcification in Bicuspid Valves: A Coupled Hemodynamics and Multiscale Structural Computations.

Ann Biomed Eng. 2021-12

[10]
Inconsistent echocardiographic grading of aortic stenosis: is the left ventricular outflow tract important?

Heart. 2013-1-24

引用本文的文献

[1]
Recent Advances in Deciphering Normal and Diseased Aortic Valve Biology Using Transcriptomic Technologies.

J Cell Mol Med. 2025-9

[2]
Cellular and Matrix Organisation of the Human Aortic Valve Interleaflet Triangles.

Biology (Basel). 2025-7-16

[3]
Contemporary Clinical Treatment Options and Outcomes of Aortic Valve Disease: Integrating Modern Insights into a Cohesive Therapeutic Paradigm.

J Cardiovasc Dev Dis. 2025-6-12

[4]
The biomechanical effect of the O-A angle on the aortic valve under left ventricular assist device support: a primary fluid-structure interaction study.

J Thorac Dis. 2024-12-31

[5]
An Artificial Intelligence-Based Non-Invasive Approach for Cardiovascular Disease Risk Stratification in Obstructive Sleep Apnea Patients: A Narrative Review.

Rev Cardiovasc Med. 2024-12-28

[6]
Challenges and Opportunities in Valvular Heart Disease: From Molecular Mechanisms to the Community.

Arterioscler Thromb Vasc Biol. 2024-4

本文引用的文献

[1]
Valvulogenesis of a living, innervated pulmonary root induced by an acellular scaffold.

Commun Biol. 2023-10-7

[2]
Design and execution of a verification, validation, and uncertainty quantification plan for a numerical model of left ventricular flow after LVAD implantation.

PLoS Comput Biol. 2022-6

[3]
On vasa vasorum: A history of advances in understanding the vessels of vessels.

Sci Adv. 2022-4-22

[4]
Atypical Expression of Smooth Muscle Markers and Co-activators and Their Regulation in Rheumatic Aortic and Calcified Bicuspid Valves.

Front Cardiovasc Med. 2022-3-17

[5]
Immunomodulation by endothelial cells - partnering up with the immune system?

Nat Rev Immunol. 2022-9

[6]
The Ross Operation and the Long Windy Road to the Clinic.

J Am Coll Cardiol. 2022-3-1

[7]
Propensity-Matched Comparison of the Ross Procedure and Prosthetic Aortic Valve Replacement in Adults.

J Am Coll Cardiol. 2022-3-1

[8]
Animal studies for the evaluation of in situ tissue-engineered vascular grafts - a systematic review, evidence map, and meta-analysis.

NPJ Regen Med. 2022-2-23

[9]
Aortic valve repair for the treatment of rheumatic aortic valve disease: a systematic review and meta-analysis.

Sci Rep. 2022-1-13

[10]
High Wall Shear Stress can Predict Wall Degradation in Ascending Aortic Aneurysms: An Integrated Biomechanics Study.

Front Bioeng Biotechnol. 2021-10-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索