Suppr超能文献

末端脱氧核苷酸转移酶与Ku的关联。

Association of terminal deoxynucleotidyl transferase with Ku.

作者信息

Mahajan K N, Gangi-Peterson L, Sorscher D H, Wang J, Gathy K N, Mahajan N P, Reeves W H, Mitchell B S

机构信息

University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA.

出版信息

Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13926-31. doi: 10.1073/pnas.96.24.13926.

Abstract

Terminal deoxynucleotidyl transferase (TdT) catalyzes the addition of nucleotides at the junctions of rearranging Ig and T cell receptor gene segments, thereby generating antigen receptor diversity. Ku is a heterodimeric protein composed of 70- and 86-kDa subunits that binds DNA ends and is required for V(D)J recombination and DNA double-strand break (DSB) repair. We provide evidence for a direct interaction between TdT and Ku proteins. Studies with a baculovirus expression system show that TdT can interact specifically with each of the Ku subunits and with the heterodimer. The interaction between Ku and TdT is also observed in pre-T cells with endogenously expressed proteins. The protein-protein interaction is DNA independent and occurs at physiological salt concentrations. Deletion mutagenesis experiments reveal that the N-terminal region of TdT (131 amino acids) is essential for interaction with the Ku heterodimer. This region, although not important for TdT polymerization activity, contains a BRCA1 C-terminal domain that has been shown to mediate interactions of proteins involved in DNA repair. The induction of DSBs in Cos-7 cells transfected with a human TdT expression construct resulted in the appearance of discrete nuclear foci in which TdT and Ku colocalize. The physical association of TdT with Ku suggests a possible mechanism by which TdT is recruited to the sites of DSBs such as V(D)J recombination intermediates.

摘要

末端脱氧核苷酸转移酶(TdT)催化在重排的免疫球蛋白(Ig)和T细胞受体基因片段的连接处添加核苷酸,从而产生抗原受体多样性。Ku是一种由70 kDa和86 kDa亚基组成的异源二聚体蛋白,它结合DNA末端,是V(D)J重组和DNA双链断裂(DSB)修复所必需的。我们提供了TdT与Ku蛋白之间直接相互作用的证据。利用杆状病毒表达系统进行的研究表明,TdT可以与Ku的每个亚基以及异源二聚体特异性相互作用。在表达内源性蛋白的前T细胞中也观察到了Ku与TdT之间的相互作用。这种蛋白质-蛋白质相互作用不依赖于DNA,且发生在生理盐浓度下。缺失诱变实验表明,TdT的N端区域(131个氨基酸)对于与Ku异源二聚体的相互作用至关重要。该区域虽然对TdT的聚合活性不重要,但包含一个BRCA1 C端结构域,该结构域已被证明可介导参与DNA修复的蛋白质之间的相互作用。在用人类TdT表达构建体转染的Cos-7细胞中诱导DSB,导致出现离散的核灶,其中TdT和Ku共定位。TdT与Ku的物理关联提示了一种可能的机制,通过该机制TdT被招募到DSB位点,如V(D)J重组中间体。

相似文献

1
Association of terminal deoxynucleotidyl transferase with Ku.
Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13926-31. doi: 10.1073/pnas.96.24.13926.
3
Distinct requirements for Ku in N nucleotide addition at V(D)J- and non-V(D)J-generated double-strand breaks.
Nucleic Acids Res. 2004 Mar 26;32(6):1866-73. doi: 10.1093/nar/gkh502. Print 2004.
4
Protein-protein and protein-DNA interaction regions within the DNA end-binding protein Ku70-Ku86.
Mol Cell Biol. 1996 Sep;16(9):5186-93. doi: 10.1128/MCB.16.9.5186.
5
Involvement of the Ku autoantigen in the cellular response to DNA double-strand breaks.
Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7623-7. doi: 10.1073/pnas.91.16.7623.
7
Transient association of Ku with nuclear substrates characterized using fluorescence photobleaching.
J Immunol. 2002 Mar 1;168(5):2348-55. doi: 10.4049/jimmunol.168.5.2348.
8
Interaction of human Ku70 with TRF2.
FEBS Lett. 2000 Sep 8;481(1):81-5. doi: 10.1016/s0014-5793(00)01958-x.
9
A model for Ku heterodimer assembly and interaction with DNA. Implications for the function of Ku antigen.
J Biol Chem. 1998 Nov 20;273(47):31068-74. doi: 10.1074/jbc.273.47.31068.

引用本文的文献

1
Terminal deoxynucleotidyl transferase: Properties and applications.
Eng Microbiol. 2024 Nov 28;5(1):100179. doi: 10.1016/j.engmic.2024.100179. eCollection 2025 Mar.
2
Evolving a terminal deoxynucleotidyl transferase for commercial enzymatic DNA synthesis.
Nucleic Acids Res. 2025 Feb 8;53(4). doi: 10.1093/nar/gkaf115.
3
A Massively Parallel Assay of TdT Mutants Yields Variants with Altered Nucleotide Insertion Biases.
ACS Synth Biol. 2024 Oct 18;13(10):3326-3343. doi: 10.1021/acssynbio.4c00414. Epub 2024 Sep 20.
5
Holding it together: DNA end synapsis during non-homologous end joining.
DNA Repair (Amst). 2023 Oct;130:103553. doi: 10.1016/j.dnarep.2023.103553. Epub 2023 Aug 8.
6
Insight into the mechanism of DNA synthesis by human terminal deoxynucleotidyltransferase.
Life Sci Alliance. 2022 Aug 1;5(12):e202201428. doi: 10.26508/lsa.202201428.
7
Noncanonical prokaryotic X family DNA polymerases lack polymerase activity and act as exonucleases.
Nucleic Acids Res. 2022 Jun 24;50(11):6398-6413. doi: 10.1093/nar/gkac461.
8
Structural evidence for an in base selection mechanism involving Loop1 in polymerase μ at an NHEJ double-strand break junction.
J Biol Chem. 2019 Jul 5;294(27):10579-10595. doi: 10.1074/jbc.RA119.008739. Epub 2019 May 28.
10
hPso4/hPrp19: a critical component of DNA repair and DNA damage checkpoint complexes.
Oncogene. 2016 May 5;35(18):2279-86. doi: 10.1038/onc.2015.321. Epub 2015 Sep 14.

本文引用的文献

2
Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage.
Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1921-6. doi: 10.1073/pnas.96.5.1921.
3
Sequestration of mammalian Rad51-recombination protein into micronuclei.
J Cell Biol. 1999 Jan 11;144(1):11-20. doi: 10.1083/jcb.144.1.11.
5
A model for Ku heterodimer assembly and interaction with DNA. Implications for the function of Ku antigen.
J Biol Chem. 1998 Nov 20;273(47):31068-74. doi: 10.1074/jbc.273.47.31068.
6
Structure of an XRCC1 BRCT domain: a new protein-protein interaction module.
EMBO J. 1998 Nov 2;17(21):6404-11. doi: 10.1093/emboj/17.21.6404.
8
The XRCC4 gene product is a target for and interacts with the DNA-dependent protein kinase.
J Biol Chem. 1998 Jan 16;273(3):1794-801. doi: 10.1074/jbc.273.3.1794.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验