Karki BB, Wentzcovitch RM, Baroni S
Department of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA. Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34014 Trieste, Italy.
Science. 1999 Nov 26;286(5445):1705-7. doi: 10.1126/science.286.5445.1705.
The individual elastic constants of magnesium oxide (MgO) have been determined throughout Earth's lower mantle (LM) pressure-temperature regime with density functional perturbation theory. It is shown that temperature effects on seismic observables (density, velocities, and anisotropy) are monotonically suppressed with increasing pressure. Therefore, at realistic LM conditions, the isotropic wave velocities of MgO remain comparable to seismic velocities, as previously noticed in athermal high-pressure calculations. Also, the predicted strong pressure-induced anisotropy is preserved toward the bottom of the LM, so lattice-preferred orientations in MgO may contribute substantially to the observed seismic anisotropy in the D" layer.
利用密度泛函微扰理论,在整个地球下地幔(LM)的压力 - 温度范围内确定了氧化镁(MgO)的各个弹性常数。结果表明,随着压力增加,温度对地震可观测量(密度、速度和各向异性)的影响被单调抑制。因此,在实际的下地幔条件下,MgO的各向同性波速与地震波速相当,正如之前在无热高压计算中所注意到的那样。此外,预测的强压力诱导各向异性在LM底部得以保留,因此MgO中的晶格择优取向可能对D"层中观测到的地震各向异性有很大贡献。