Faccenda Manuele, Ferreira Ana M G, Tisato Nicola, Lithgow-Bertelloni Carolina, Stixrude Lars, Pennacchioni Giorgio
Dipartimento di Geoscienze Università di Padova Padua Italy.
Department of Earth Sciences University College London London UK.
J Geophys Res Solid Earth. 2019 Feb;124(2):1671-1687. doi: 10.1029/2018JB016482. Epub 2019 Feb 8.
Several theoretical studies indicate that a substantial fraction of the measured seismic anisotropy could be interpreted as extrinsic anisotropy associated with compositional layering in rocks, reducing the significance of strain-induced intrinsic anisotropy. Here we quantify the potential contribution of grain-scale and rock-scale compositional anisotropy to the observations by (i) combining effective medium theories with realistic estimates of mineral isotropic elastic properties and (ii) measuring velocities of synthetic seismic waves propagating through modeled strain-induced microstructures. It is shown that for typical mantle and oceanic crust subsolidus compositions, rock-scale compositional layering does not generate any substantial extrinsic anisotropy (<1%) because of the limited contrast in isotropic elastic moduli among different rocks. Quasi-laminated structures observed in subducting slabs using and wave scattering are often invoked as a source of extrinsic anisotropy, but our calculations show that they only generate minor seismic anisotropy (<0.1-0.2% of Vp and Vs radial anisotropy). More generally, rock-scale compositional layering, when present, cannot be detected with seismic anisotropy studies but mainly with wave scattering. In contrast, when grain-scale layering is present, significant extrinsic anisotropy could exist in vertically limited levels of the mantle such as in a mid-ocean ridge basalt-rich lower transition zone or in the uppermost lower mantle where foliated basalts and pyrolites display up to 2-3% Vp and 3-6% Vs radial anisotropy. Thus, seismic anisotropy observed around the 660-km discontinuity could be possibly related to grain-scale shape-preferred orientation. Extrinsic anisotropy can form also in a compositionally homogeneous mantle, where velocity variations associated with major phase transitions can generate up to 1% of positive radial anisotropy.
多项理论研究表明,所测得的地震各向异性的很大一部分可被解释为与岩石成分分层相关的外在各向异性,这降低了应变诱导的内在各向异性的重要性。在此,我们通过以下方式量化了晶粒尺度和岩石尺度成分各向异性对观测结果的潜在贡献:(i) 将有效介质理论与矿物各向同性弹性性质的实际估计相结合;(ii) 测量通过模拟应变诱导微结构传播的合成地震波的速度。结果表明,对于典型的地幔和大洋地壳固相线成分,由于不同岩石之间各向同性弹性模量的差异有限,岩石尺度的成分分层不会产生任何显著的外在各向异性(<1%)。在俯冲板块中利用P波和S波散射观测到的准层状结构常被认为是外在各向异性的一个来源,但我们的计算表明,它们仅产生微小的地震各向异性(Vp和Vs径向各向异性的<0.1 - 0.2%)。更一般地说,岩石尺度的成分分层,即便存在,也无法通过地震各向异性研究检测到,而主要是通过波散射来检测。相比之下,当存在晶粒尺度分层时,在诸如富含洋中脊玄武岩的下地幔过渡带或最上部下地幔等垂直受限的地幔层中可能存在显著的外在各向异性,其中叶理状玄武岩和辉石岩显示出高达2 - 3%的Vp和3 - 6%的Vs径向各向异性。因此,在660公里不连续面附近观测到的地震各向异性可能与晶粒尺度的形状优选取向有关。外在各向异性也可在成分均匀的地幔中形成,与主要相变相关的速度变化可产生高达1%的正径向各向异性。