Amari S
RIKEN Brain Science Institute, Wako-shi, Hirosawa, Saitama 351-01, Japan.
Neural Comput. 1999 Nov 15;11(8):1875-83. doi: 10.1162/089976699300015990.
Independent component analysis or blind source separation is a new technique of extracting independent signals from mixtures. It is applicable even when the number of independent sources is unknown and is larger or smaller than the number of observed mixture signals. This article extends the natural gradient learning algorithm to be applicable to these overcomplete and undercomplete cases. Here, the observed signals are assumed to be whitened by preprocessing, so that we use the natural Riemannian gradient in Stiefel manifolds.
独立成分分析或盲源分离是一种从混合信号中提取独立信号的新技术。即使独立源的数量未知,且大于或小于观测到的混合信号数量时,它也适用。本文将自然梯度学习算法进行扩展,使其适用于这些超完备和欠完备的情况。在这里,假设观测信号经过预处理白化,以便我们在Stiefel流形中使用自然黎曼梯度。