Suppr超能文献

基于序贯和变分贝叶斯学习的非平稳源分离。

Nonstationary source separation using sequential and variational Bayesian learning.

出版信息

IEEE Trans Neural Netw Learn Syst. 2013 May;24(5):681-94. doi: 10.1109/TNNLS.2013.2242090.

Abstract

Independent component analysis (ICA) is a popular approach for blind source separation where the mixing process is assumed to be unchanged with a fixed set of stationary source signals. However, the mixing system and source signals are nonstationary in real-world applications, e.g., the source signals may abruptly appear or disappear, the sources may be replaced by new ones or even moving by time. This paper presents an online learning algorithm for the Gaussian process (GP) and establishes a separation procedure in the presence of nonstationary and temporally correlated mixing coefficients and source signals. In this procedure, we capture the evolved statistics from sequential signals according to online Bayesian learning. The activity of nonstationary sources is reflected by an automatic relevance determination, which is incrementally estimated at each frame and continuously propagated to the next frame. We employ the GP to characterize the temporal structures of time-varying mixing coefficients and source signals. A variational Bayesian inference is developed to approximate the true posterior for estimating the nonstationary ICA parameters and for characterizing the activity of latent sources. The differences between this ICA method and the sequential Monte Carlo ICA are illustrated. In the experiments, the proposed algorithm outperforms the other ICA methods for the separation of audio signals in the presence of different nonstationary scenarios.

摘要

独立成分分析(ICA)是一种流行的盲源分离方法,其中假设混合过程不变,并且具有固定的静止源信号集。然而,在实际应用中,混合系统和源信号是非平稳的,例如,源信号可能突然出现或消失,源可能被新的源替换,甚至随时间移动。本文提出了一种用于高斯过程(GP)的在线学习算法,并在存在非平稳和时变混合系数和源信号的情况下建立了一种分离过程。在这个过程中,我们根据在线贝叶斯学习从顺序信号中捕获演变的统计信息。非平稳源的活动由自动相关性确定来反映,该自动相关性在每一帧中被增量估计,并持续传播到下一帧。我们使用 GP 来描述时变混合系数和源信号的时间结构。开发了一种变分贝叶斯推理来近似真实的后验,以估计非平稳 ICA 参数,并描述潜在源的活动。这个 ICA 方法与顺序蒙特卡罗 ICA 之间的区别进行了说明。在实验中,所提出的算法在不同非平稳场景下分离音频信号时的性能优于其他 ICA 方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验