Suppr超能文献

基于独立分量分析的运动想象脑-机接口的自动通道选择方法。

An Automatic Channel Selection Approach for ICA-Based Motor Imagery Brain Computer Interface.

机构信息

The Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, China.

The School of Computer Science and Technology, Anhui University, Hefei, China.

出版信息

J Med Syst. 2018 Nov 6;42(12):253. doi: 10.1007/s10916-018-1106-3.

Abstract

Independent component analysis (ICA) is a potential spatial filtering method for the implementation of motor imagery brain-computer interface (MIBCI). However, ICA-based MIBCI (ICA-MIBCI) is sensitive to electroencephalogram (EEG) channels and the quality of the training data, which are two crucial factors affecting the stability and classification performance of ICA-MIBCI. To address these problems, this paper is mainly focused on the investigation of EEG channel optimization. As a reference, we constructed a single-trial-based ICA-MIBCI system with commonly used channels and common spatial pattern-based MIBCI (CSP-MIBCI). To minimize the impact of artifacts on EEG channel optimization, a data-quality evaluation method, named "self-testing" in this paper, was used in a single-trial-based ICA-MIBCI system to evaluate the quality of single trials in each dataset; the resulting self-testing accuracies were used for the selection of high-quality trials. Given several candidate channel configurations, ICA filters were calculated using selected high-quality trials and applied to the corresponding ICA-MIBCI implementation. Optimal channels for each dataset were assessed and selected according to the self-testing results related to various candidate configurations. Forty-eight MI datasets of six subjects were employed in this study to validate the proposed methods. Experimental results revealed that the average classification accuracy of the optimal channels yielded a relative increment of 2.8% and 8.5% during self-testing, 14.4% and 9.5% during session-to-session transfer, and 36.2% and 26.7% during subject-to-subject transfer compared to CSP-MIBCI and ICA-MIBCI with fixed the channel configuration. This work indicates that the proposed methods can efficiently improve the practical feasibility of ICA-MIBCI.

摘要

独立成分分析(ICA)是实现运动想象脑-机接口(MIBCI)的一种潜在空间滤波方法。然而,基于 ICA 的 MIBCI(ICA-MIBCI)对脑电图(EEG)通道和训练数据的质量敏感,这两个因素是影响 ICA-MIBCI 的稳定性和分类性能的关键因素。针对这些问题,本文主要关注 EEG 通道优化的研究。作为参考,我们构建了一个基于单试的 ICA-MIBCI 系统,使用了常用的通道和基于共空间模式的 MIBCI(CSP-MIBCI)。为了最大限度地减少伪影对 EEG 通道优化的影响,本文提出了一种名为“自我测试”的数据质量评估方法,用于评估每个数据集中单试的质量;根据自我测试的结果,选择高质量的试次进行通道优化。在给定几种候选通道配置的情况下,使用所选的高质量试次计算 ICA 滤波器,并将其应用于相应的 ICA-MIBCI 实现。根据与各种候选配置相关的自我测试结果,评估和选择每个数据集的最优通道。本研究采用了 6 名受试者的 48 个 MI 数据集来验证所提出的方法。实验结果表明,与 CSP-MIBCI 和固定通道配置的 ICA-MIBCI 相比,最优通道的平均分类准确率在自我测试中分别提高了 2.8%和 8.5%,在会话间转移中分别提高了 14.4%和 9.5%,在受试者间转移中分别提高了 36.2%和 26.7%。这项工作表明,所提出的方法可以有效地提高 ICA-MIBCI 的实际可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验