Suppr超能文献

在毕赤酵母中产生的截短漆酶的电化学研究。

Electrochemical studies of a truncated laccase produced in Pichia pastoris.

作者信息

Gelo-Pujic M, Kim H H, Butlin N G, Palmore G T

机构信息

Department of Chemistry, University of California, Davis, California 95616, USA.

出版信息

Appl Environ Microbiol. 1999 Dec;65(12):5515-21. doi: 10.1128/AEM.65.12.5515-5521.1999.

Abstract

The cDNA that encodes an isoform of laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms of their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon (i.e., LCCI-->LCCIa) influences the rate of heterogeneous electron transfer between an electrode and the copper-containing active site (k(het) for LCCIa = 1.3 x 10(-4) cm s(-1)). These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis.

摘要

编码云芝漆酶同工型(LCCI)以及截短型(LCCIa)的cDNA被亚克隆,并以酵母毕赤酵母作为异源宿主进行表达。LCCIa的氨基酸序列与LCCI相同,只是LCCI C末端的最后11个氨基酸被单个半胱氨酸残基取代。引入这种修饰是为了改善电极与漆酶含铜活性位点之间的电子转移动力学。比较了两种漆酶(LCCI和LCCIa)对两种具有不同氧化还原电位的底物的相对活性。对含有LCCI和LCCIa的溶液进行的电化学研究结果表明,LCCIa活性位点的氧化还原电位比其他真菌漆酶的氧化还原电位向更负值移动(相对于标准氢电极电压为411 mV)。此外,用单个半胱氨酸密码子替换漆酶基因C末端的11个密码子(即LCCI→LCCIa)会影响电极与含铜活性位点之间的异相电子转移速率(LCCIa的k(het)=1.3×10(-4) cm s(-1))。这些结果首次证明,通过定点诱变改变蛋白质的一级结构可以提高氧化还原酶与电极之间的电子转移速率。

相似文献

1
Electrochemical studies of a truncated laccase produced in Pichia pastoris.
Appl Environ Microbiol. 1999 Dec;65(12):5515-21. doi: 10.1128/AEM.65.12.5515-5521.1999.
2
Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus I-937 and expression in Pichia pastoris.
Eur J Biochem. 2000 Mar;267(6):1619-25. doi: 10.1046/j.1432-1327.2000.01166.x.
6
Cloning and sequencing of a second laccase gene from the white-rot fungus Coriolus versicolor.
FEMS Microbiol Lett. 1997 Oct 1;155(1):79-84. doi: 10.1111/j.1574-6968.1997.tb12689.x.
7
Electrochemical characterization of a unique, "neutral" laccase from Flammulina velutipes.
J Biosci Bioeng. 2013 Feb;115(2):159-67. doi: 10.1016/j.jbiosc.2012.09.011. Epub 2012 Oct 11.
9
Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host.
Microbiology (Reading). 2002 Dec;148(Pt 12):4003-4014. doi: 10.1099/00221287-148-12-4003.
10
Heterologous expression and structural characterization of two low pH laccases from a biopulping white-rot fungus Physisporinus rivulosus.
Appl Microbiol Biotechnol. 2013 Feb;97(4):1589-99. doi: 10.1007/s00253-012-4011-6. Epub 2012 Apr 12.

引用本文的文献

1
Protein Engineering Approaches to Enhance Fungal Laccase Production in .
Int J Mol Sci. 2021 Jan 25;22(3):1157. doi: 10.3390/ijms22031157.
2
Media improvement for 10 L bioreactor production of rPOXA 1B laccase by .
3 Biotech. 2019 Dec;9(12):447. doi: 10.1007/s13205-019-1979-y. Epub 2019 Nov 11.
3
Yeast Hosts for the Production of Recombinant Laccases: A Review.
Mol Biotechnol. 2016 Feb;58(2):93-116. doi: 10.1007/s12033-015-9910-1.
5
Fungal laccases and their applications in bioremediation.
Enzyme Res. 2014;2014:163242. doi: 10.1155/2014/163242. Epub 2014 May 15.
6
Stability mechanisms of a thermophilic laccase probed by molecular dynamics.
PLoS One. 2013 Apr 29;8(4):e61985. doi: 10.1371/journal.pone.0061985. Print 2013.
8
Engineered proteins: redox properties and their applications.
Antioxid Redox Signal. 2012 Dec 15;17(12):1796-822. doi: 10.1089/ars.2011.4001. Epub 2012 Jun 11.
9
Engineering laccases: in search for novel catalysts.
Curr Genomics. 2011 Apr;12(2):123-9. doi: 10.2174/138920211795564340.
10
Heterologous laccase production and its role in industrial applications.
Bioeng Bugs. 2010 Jul-Aug;1(4):252-62. doi: 10.4161/bbug.1.4.11438.

本文引用的文献

1
A Redox Fuel Cell That Operates with Methane as Fuel at 120{degrees}C.
Science. 1994 Sep 2;265(5177):1418-20. doi: 10.1126/science.265.5177.1418.
2
Purification and some properties of laccase from Polyporus versicolor.
Biochim Biophys Acta. 1963 Jun 11;73:204-12. doi: 10.1016/0006-3002(63)90304-4.
3
Targeted mutations in a Trametes villosa laccase. Axial perturbations of the T1 copper.
J Biol Chem. 1999 Apr 30;274(18):12372-5. doi: 10.1074/jbc.274.18.12372.
4
Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile.
Biochem J. 1998 Aug 15;334 ( Pt 1)(Pt 1):63-70. doi: 10.1042/bj3340063.
5
Expression of EGF and HIV envelope glycoprotein.
Methods Mol Biol. 1998;103:209-25. doi: 10.1385/0-89603-421-6:209.
6
8
Cloning and sequencing of a second laccase gene from the white-rot fungus Coriolus versicolor.
FEMS Microbiol Lett. 1997 Oct 1;155(1):79-84. doi: 10.1111/j.1574-6968.1997.tb12689.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验