Suppr超能文献

Role of metal ions on the secondary and quaternary structure of alkaline phosphatase from bovine intestinal mucosa.

作者信息

Bortolato M, Besson F, Roux B

机构信息

Laboratoire de Physico-Chimie Biologique, Université Claude Bernard Lyon I, Villeurbanne, France.

出版信息

Proteins. 1999 Nov 1;37(2):310-8.

Abstract

Alkaline phosphatase (EC 3.1.3.1) from bovine intestinal mucosa (BIAP) is an homodimeric metalloenzyme, containing one Mg2+ and two Zn2+ ions in each active site. ApoBIAP, prepared using ion-chelating agents, exhibited a dramatic decrease of its hydrolase activity, concomittant to conformational changes in its quaternary structure. By rate-zonal centrifugation and electrophoresis, we demonstrated, for the first time, that the loss of divalent ions leads to some monomerization process for a metal-depleted alkaline phosphatase. Divalent ions are also involved in the secondary and tertiary structures. Metal-depletion induced more exposure of some Trp residues and hydrophobic regions to the solvent (as proved by intrinsic and ANS fluorescences). These changes might correspond to the disappearance of alpha-helices and/or turns with a concomittant appearance of unordered structures and beta-sheets (as probed by FTIR spectroscopy). For BIAP, three steps of temperature-induced changes were exhibited, while for apoBIAP, only one step was exhibited at 55 degrees C. Our work on BIAP showed two main differences with alkaline phosphatase from Escherichia coli. The loss of the divalent ions induces protein monomerization and the total recovery of enzyme activity by divalent ion addition to apoBIAP was not obtained.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验