Kannenberg F, Ellinghaus P, Assmann G, Seedorf U
Institut für Arterioskleroseforschung and the Institut für Klinische Chemie und Laboratoriumsmedizin (Zentrallaboratorium) der Westfälischen Wilhelms-Universität Münster, D-48129 Münster, Germany.
J Biol Chem. 1999 Dec 10;274(50):35455-60. doi: 10.1074/jbc.274.50.35455.
Peroxisomal beta-oxidation plays an important role in the metabolism of a wide range of substrates, including various fatty acids and the steroid side chain in bile acid synthesis. Two distinct thiolases have been implicated to function in peroxisomal beta-oxidation: the long known 41-kDa beta-ketothiolase identified by Hashimoto and co-workers (Hijikata, M., Ishii, N., Kagamiyama, H., Osumi, T., and Hashimoto, T. (1987) J. Biol. Chem. 262, 8151-8158) and the recently discovered 60-kDa SCPx thiolase, that consists of an N-terminal domain with beta-ketothiolase activity and a C-terminal moiety of sterol carrier protein-2 (SCP2, a lipid carrier or transfer protein). Recently, gene targeting of the SCP2/SCPx gene has shown in mice that the SCPx beta-ketothiolase is involved in peroxisomal beta-oxidation of 2-methyl-branched chain fatty acids like pristanic acid. In our present work we have investigated bile acid synthesis in the SCP2/SCPx knockout mice. Specific inhibition of beta-oxidation at the thiolytic cleavage step in bile acid synthesis is supported by our finding of pronounced accumulation in bile and serum from the knockout mice of 3alpha,7alpha, 12alpha-trihydroxy-27-nor-5beta-cholestane-24-one (which is a known bile alcohol derivative of the cholic acid synthetic intermediate 3alpha,7alpha,12alpha-trihydroxy-24-keto-cholestano yl-coenzyme A). Moreover, these mice have elevated concentrations of bile acids with shortened side chains (i.e. 23-norcholic acid and 23-norchenodeoxycholic acid), which may be produced via alpha- rather than beta-oxidation. Our results demonstrate that the SCPx thiolase is critical for beta-oxidation of the steroid side chain in conversion of cholesterol into bile acids.
过氧化物酶体β-氧化在多种底物的代谢中发挥重要作用,这些底物包括各种脂肪酸以及胆汁酸合成中的类固醇侧链。两种不同的硫解酶被认为在过氧化物酶体β-氧化中起作用:一种是由桥本及其同事鉴定出的广为人知的41 kDaβ-酮硫解酶(Hijikata, M., Ishii, N., Kagamiyama, H., Osumi, T., and Hashimoto, T. (1987) J. Biol. Chem. 262, 8151 - 8158),另一种是最近发现的60 kDa SCPx硫解酶,它由一个具有β-酮硫解酶活性的N端结构域和一个固醇载体蛋白2(SCP2,一种脂质载体或转运蛋白)的C端部分组成。最近,对SCP2/SCPx基因进行基因敲除的小鼠实验表明,SCPxβ-酮硫解酶参与了如植烷酸等2-甲基支链脂肪酸的过氧化物酶体β-氧化。在我们目前的工作中,我们研究了SCP2/SCPx基因敲除小鼠的胆汁酸合成。我们发现基因敲除小鼠的胆汁和血清中3α,7α,12α-三羟基-27-降-5β-胆甾烷-24-酮(它是胆酸合成中间体3α,7α,12α-三羟基-24-酮-胆甾烷酰辅酶A的一种已知胆汁醇衍生物)明显蓄积,这支持了在胆汁酸合成的硫解裂解步骤对β-氧化的特异性抑制。此外,这些小鼠中具有缩短侧链的胆汁酸(即23-降胆酸和23-降鹅去氧胆酸)浓度升高,这些胆汁酸可能是通过α-氧化而非β-氧化产生的。我们的结果表明,SCPx硫解酶对于胆固醇转化为胆汁酸过程中类固醇侧链的β-氧化至关重要。