Suppr超能文献

八乙二醇十二烷基醚诱导人红细胞产生的环行细胞内膜泡

Torocyte membrane endovesicles induced by octaethyleneglycol dodecylether in human erythrocytes.

作者信息

Bobrowska-Hägerstrand M, Kralj-Iglic V, Iglic A, Bialkowska K, Isomaa B, Hägerstrand H

机构信息

Department of Biology, Abo Akademi University, FIN-20520, Abo/Turku, Finland.

出版信息

Biophys J. 1999 Dec;77(6):3356-62. doi: 10.1016/S0006-3495(99)77167-5.

Abstract

Endovesicles induced in human erythrocytes by octaethyleneglycol dodecylether (C12E8) were studied by confocal laser scanning microscopy, using fluorescein isothiocyanate dextran as a nonspecific fluid marker. The endovesicles appeared to consist mainly of a ring-formed toroidal part joined with a central flat membrane segment. The torocyte contour length was several microm. There was usually one torocyte endovesicle per cell. The endovesicles seemed to be located near the cell surface. In sections of C12E8-treated erythrocytes transmission electron microscopy revealed the frequent occurrence of flat membrane structures with a bulby periphery, which apparently are cross sections of torocyte endovesicles. The possible physical mechanisms leading to the observed torocyte endovesicle shape are discussed. The torocyte endovesicles seem to be formed in a process in which an initially stomatocytic invagination loses volume while maintaining a large surface area. Because intercalation of C12E8 in the erythrocyte membrane induces inward membrane bending (stomatocytosis) we assume that C12E8 is preferentially located in the inner lipid layer of the erythrocyte membrane, i.e., in the outer lipid layer of the endovesicle membrane. It is suggested that local disturbances of the lipid molecules in the vicinity of the C12E8 molecules in the outer lipid layer of the endovesicle membrane form membrane inclusions with the effective shape of an inverted truncated cone. If the interaction between the inclusion and the membrane is weak, the membrane of such an endovesicle can be characterized by its negative spontaneous curvature, which may lead to a torocyte endovesicle shape with a small relative volume. Effects of a possible strong interaction between the C12E8-induced membrane inclusions and the membrane on the stability of the torocyte endovesicles are also indicated.

摘要

使用异硫氰酸荧光素葡聚糖作为非特异性流体标记物,通过共聚焦激光扫描显微镜研究了由八甘醇十二烷基醚(C12E8)诱导人红细胞形成的内囊泡。内囊泡似乎主要由一个环形的环形部分与一个中央扁平膜段相连组成。环形红细胞轮廓长度为几微米。每个细胞通常有一个环形红细胞内囊泡。内囊泡似乎位于细胞表面附近。在C12E8处理的红细胞切片中,透射电子显微镜显示经常出现外周呈球状的扁平膜结构,这显然是环形红细胞内囊泡的横截面。讨论了导致观察到的环形红细胞内囊泡形状的可能物理机制。环形红细胞内囊泡似乎是在一个过程中形成的,即最初的口形细胞内陷在保持较大表面积的同时体积减小。由于C12E8插入红细胞膜会诱导向内的膜弯曲(口形细胞增多症),我们假设C12E8优先位于红细胞膜的内层脂质层,即内囊泡膜的外层脂质层。有人提出,内囊泡膜外层脂质层中C12E8分子附近的脂质分子局部扰动形成了有效形状为倒截头圆锥的膜内含物。如果内含物与膜之间的相互作用较弱,这种内囊泡的膜可以用其负自发曲率来表征,这可能导致相对体积较小的环形红细胞内囊泡形状。还指出了C12E8诱导的膜内含物与膜之间可能的强相互作用对环形红细胞内囊泡稳定性的影响。

相似文献

1
Torocyte membrane endovesicles induced by octaethyleneglycol dodecylether in human erythrocytes.
Biophys J. 1999 Dec;77(6):3356-62. doi: 10.1016/S0006-3495(99)77167-5.
2
Torocyte shapes of red blood cell daughter vesicles.
Bioelectrochemistry. 2000 Dec;52(2):203-11. doi: 10.1016/s0302-4598(00)00103-3.
3
Endovesicle formation and membrane perturbation induced by polyoxyethyleneglycolalkylethers in human erythrocytes.
Biochim Biophys Acta. 2004 Oct 11;1665(1-2):191-200. doi: 10.1016/j.bbamem.2004.08.010.
6
On stability of circular hole in membrane bilayer.
Cell Mol Biol Lett. 2001;6(2):167-71.
7
Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape.
Eur Biophys J. 1998;27(4):335-9. doi: 10.1007/s002490050140.
8
Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Apr;61(4 Pt B):4230-4. doi: 10.1103/physreve.61.4230.

引用本文的文献

1
A Monte Carlo study of giant vesicle morphologies in nonequilibrium environments.
Biophys J. 2021 Oct 19;120(20):4418-4428. doi: 10.1016/j.bpj.2021.09.005. Epub 2021 Sep 8.
3
Minimizing isotropic and deviatoric membrane energy - An unifying formation mechanism of different cellular membrane nanovesicle types.
PLoS One. 2020 Dec 31;15(12):e0244796. doi: 10.1371/journal.pone.0244796. eCollection 2020.
4
Stability of membranous nanostructures: a possible key mechanism in cancer progression.
Int J Nanomedicine. 2012;7:3579-96. doi: 10.2147/IJN.S29076. Epub 2012 Jul 12.
5
Membrane stress and permeabilization induced by asymmetric incorporation of compounds.
Biophys J. 2001 Jul;81(1):184-95. doi: 10.1016/S0006-3495(01)75690-1.

本文引用的文献

2
Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions.
Phys Rev Lett. 1996 Jun 3;76(23):4436-4439. doi: 10.1103/PhysRevLett.76.4436.
3
Curvature-induced lateral phase segregation in two-component vesicles.
Phys Rev Lett. 1993 Mar 1;70(9):1335-1338. doi: 10.1103/PhysRevLett.70.1335.
4
Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Jun;49(6):5389-5407. doi: 10.1103/physreve.49.5389.
6
Elastic energy of curvature-driven bump formation on red blood cell membrane.
Biophys J. 1996 Feb;70(2):1027-35. doi: 10.1016/S0006-3495(96)79648-0.
7
Shapes of bilayer vesicles with membrane embedded molecules.
Eur Biophys J. 1996;24(5):311-21. doi: 10.1007/BF00180372.
8
On the role of the elastic properties of closed lamellar membranes in membrane fusion.
Ann N Y Acad Sci. 1994 Mar 9;710:179-91. doi: 10.1111/j.1749-6632.1994.tb26626.x.
10
Lateral organization of membranes and cell shapes.
Biophys J. 1981 Oct;36(1):1-19. doi: 10.1016/S0006-3495(81)84713-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验