Suppr超能文献

Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements.

作者信息

Kalender W A, Wolf H, Suess C

机构信息

Institute of Medical Physics, University of Erlangen, Germany.

出版信息

Med Phys. 1999 Nov;26(11):2248-53. doi: 10.1118/1.598738.

Abstract

Theoretical considerations and simulation studies have led to the expectation that patient dose in CT (computed tomography) can be reduced significantly without a concomitant loss in image quality if tube current is modulated according to rotation angle-dependent x-ray attenuation. In this study, the simulation results presented in Part I were validated with phantoms. We used one cylindrical, two oval, and one elliptical phantom, available both as mathematical descriptions and in physical form, to mimic different parts of the human anatomy. Prototype hardware was available to control tube current on a commercial clinical CT scanner. The potential for dose reduction was evaluated for sinusoidal and attenuation-based current modulation for variable modulation amplitudes. Agreement between simulations and measured results was better than within 10%. Dose reduction values of 8%-56% were found depending on the phantom geometry and tube current modulation function. Attenuation-based tube current modulation consistently yielded higher reduction than fixed-shape sinusoidal modulation functions. For the shoulder phantom and 70% modulation amplitude, 44.6% dose reduction was measured as compared to 34.1% for sinusoidal modulation. A maximum of 56% was measured for the shoulder phantom including inserts. Specifying mAs reduction as an estimate for dose reduction proved to be a valid and conservative estimate; measured dose is reduced more strongly than the total mAs product both centrally and on average. First patient studies confirm the results of simulation and phantom studies. We conclude that attenuation-based online tube current control has great potential for reducing patient dose in CT and that it should be made generally available for clinical use.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验