Suppr超能文献

谷氨酸转运体家族中一个保守的富含丝氨酸区域形成了一个底物敏感的折返环。

A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop.

作者信息

Slotboom D J, Sobczak I, Konings W N, Lolkema J S

机构信息

Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14282-7. doi: 10.1073/pnas.96.25.14282.

Abstract

Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft. The proteins belong to a large family of secondary transporters, which includes bacterial glutamate transporters. The C-terminal half of the glutamate transporters is well conserved and thought to contain the translocation path and the binding sites for substrate and coupling ions. A serine-rich sequence motif in this part of the proteins is located in a putative intracellular loop. Cysteine-scanning mutagenesis was applied to this loop in the glutamate transporter GltT of Bacillus stearothermophilus. The loop was found to be largely intracellular, but three consecutive positions in the conserved serine-rich motif (S269, S270, and E271) are accessible from both sides of the membrane. Single-cysteine mutants in the serine-rich motif were still capable of glutamate transport, but modification with N-ethylmaleimide blocked the transport activity in six mutants (T267C, A268C, S269C, S270C, E271C, and T272C). Two milimolars L-glutamate effectively protected against the modification of the cysteines at position 269-271 from the periplasmic side of the membrane but was unable to protect cysteine modification from the cytoplasmic side of the membrane. The results indicate that the conserved serine-rich motif in the glutamate transporter forms a reentrant loop, a structure that is found in several ion channels but is unusual for transporter proteins. The reentrant loop is of crucial importance for the function of the glutamate transporter.

摘要

神经元和胶质细胞的谷氨酸转运体可从突触间隙清除兴奋性神经递质谷氨酸。这些蛋白质属于一个庞大的次级转运体家族,其中包括细菌谷氨酸转运体。谷氨酸转运体的C端部分保守性良好,被认为包含转运途径以及底物和偶联离子的结合位点。蛋白质这一部分中富含丝氨酸的序列基序位于一个假定的细胞内环中。对嗜热栖热放线菌谷氨酸转运体GltT的这个环进行了半胱氨酸扫描诱变。发现该环主要位于细胞内,但保守的富含丝氨酸基序中的三个连续位置(S269、S270和E271)可从膜的两侧接近。富含丝氨酸基序中的单半胱氨酸突变体仍具有谷氨酸转运能力,但用N-乙基马来酰亚胺修饰会阻断六个突变体(T267C、A268C、S269C、S270C、E271C和T272C)的转运活性。2毫摩尔的L-谷氨酸可有效保护膜周质侧269-271位的半胱氨酸不被修饰,但无法保护细胞质侧的半胱氨酸修饰。结果表明,谷氨酸转运体中保守的富含丝氨酸基序形成了一个折返环,这种结构在几种离子通道中存在,但对于转运蛋白来说并不常见。折返环对谷氨酸转运体的功能至关重要。

相似文献

1
A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop.
Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14282-7. doi: 10.1073/pnas.96.25.14282.
2
Structural features of the glutamate transporter family.
Microbiol Mol Biol Rev. 1999 Jun;63(2):293-307. doi: 10.1128/MMBR.63.2.293-307.1999.
7
Membrane topology of the C-terminal half of the neuronal, glial, and bacterial glutamate transporter family.
J Biol Chem. 1996 Dec 6;271(49):31317-21. doi: 10.1074/jbc.271.49.31317.
8
Cysteine-scanning mutagenesis reveals a conformationally sensitive reentrant pore-loop in the glutamate transporter GLT-1.
J Biol Chem. 2002 Jul 19;277(29):26074-80. doi: 10.1074/jbc.M202248200. Epub 2002 May 6.
9
Cysteine-scanning mutagenesis reveals a highly amphipathic, pore-lining membrane-spanning helix in the glutamate transporter GltT.
J Biol Chem. 2001 Apr 6;276(14):10775-81. doi: 10.1074/jbc.M011064200. Epub 2001 Jan 8.

引用本文的文献

2
The importance of the excitatory amino acid transporter 3 (EAAT3).
Neurochem Int. 2016 Sep;98:4-18. doi: 10.1016/j.neuint.2016.05.007. Epub 2016 May 24.
3
Topological analysis of Hedgehog acyltransferase, a multipalmitoylated transmembrane protein.
J Biol Chem. 2015 Feb 6;290(6):3293-307. doi: 10.1074/jbc.M114.614578. Epub 2014 Dec 12.
4
Uptake of amino acids and their metabolic conversion into the compatible solute proline confers osmoprotection to Bacillus subtilis.
Appl Environ Microbiol. 2015 Jan;81(1):250-9. doi: 10.1128/AEM.02797-14. Epub 2014 Oct 24.
6
Capturing Functional Motions of Membrane Channels and Transporters with Molecular Dynamics Simulation.
J Comput Theor Nanosci. 2010 Dec;7(12):2481-2500. doi: 10.1166/jctn.2010.1636.
7
Identification of a disulfide bridge important for transport function of SNAT4 neutral amino acid transporter.
PLoS One. 2013;8(2):e56792. doi: 10.1371/journal.pone.0056792. Epub 2013 Feb 22.

本文引用的文献

1
Structural features of the glutamate transporter family.
Microbiol Mol Biol Rev. 1999 Jun;63(2):293-307. doi: 10.1128/MMBR.63.2.293-307.1999.
4
Transmembrane topology mapping using biotin-containing sulfhydryl reagents.
Methods Enzymol. 1998;296:318-31. doi: 10.1016/s0076-6879(98)96024-4.
7
From membrane to molecule to the third amino acid from the left with a membrane transport protein.
Q Rev Biophys. 1997 Nov;30(4):333-64. doi: 10.1017/s0033583597003387.
8
Identification of functional domains of the human glutamate transporters EAAT1 and EAAT2.
J Biol Chem. 1998 Jun 12;273(24):14698-706. doi: 10.1074/jbc.273.24.14698.
10
The structure of the potassium channel: molecular basis of K+ conduction and selectivity.
Science. 1998 Apr 3;280(5360):69-77. doi: 10.1126/science.280.5360.69.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验