Zaprasis Adrienne, Bleisteiner Monika, Kerres Anne, Hoffmann Tamara, Bremer Erhard
Philipps University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany.
Philipps University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany LOEWE-Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany.
Appl Environ Microbiol. 2015 Jan;81(1):250-9. doi: 10.1128/AEM.02797-14. Epub 2014 Oct 24.
The data presented here reveal a new facet of the physiological adjustment processes through which Bacillus subtilis can derive osmostress protection. We found that the import of proteogenic (Glu, Gln, Asp, Asn, and Arg) and of nonproteogenic (Orn and Cit) amino acids and their metabolic conversion into proline enhances growth under otherwise osmotically unfavorable conditions. Osmoprotection by amino acids depends on the functioning of the ProJ-ProA-ProH enzymes, but different entry points into this biosynthetic route are used by different amino acids to finally yield the compatible solute proline. Glu, Gln, Asp, and Asn are used to replenish the cellular pool of glutamate, the precursor for proline production, whereas Arg, Orn, and Cit are converted into γ-glutamic semialdehyde/Δ(1)-pyrroline-5-carboxylate, an intermediate in proline biosynthesis. The import of Glu, Gln, Asp, Asn, Arg, Orn, and Cit did not lead to a further increase in the size of the proline pool that is already present in osmotically stressed cells. Hence, our data suggest that osmoprotection of B. subtilis by this group of amino acids rests on the savings in biosynthetic building blocks and energy that would otherwise have to be devoted either to the synthesis of the proline precursor glutamate or of proline itself. Since glutamate is the direct biosynthetic precursor for proline, we studied its uptake and found that GltT, an Na(+)-coupled symporter, is the main uptake system for both glutamate and aspartate in B. subtilis. Collectively, our data show how effectively B. subtilis can exploit environmental resources to derive osmotic-stress protection through physiological means.
本文展示的数据揭示了枯草芽孢杆菌获得渗透压胁迫保护的生理调节过程的一个新方面。我们发现,蛋白质ogenic(Glu、Gln、Asp、Asn和Arg)和非蛋白质ogenic(Orn和Cit)氨基酸的导入以及它们代谢转化为脯氨酸可增强在其他情况下渗透压不利条件下的生长。氨基酸的渗透保护作用取决于ProJ - ProA - ProH酶的功能,但不同氨基酸利用该生物合成途径的不同切入点最终产生相容性溶质脯氨酸。Glu、Gln、Asp和Asn用于补充脯氨酸生产前体谷氨酸的细胞池,而Arg、Orn和Cit则转化为γ - 谷氨酸半醛/Δ(1)-吡咯啉 - 5 - 羧酸,这是脯氨酸生物合成中的一种中间体。Glu、Gln、Asp、Asn、Arg、Orn和Cit的导入并未导致渗透压胁迫细胞中已存在的脯氨酸池大小进一步增加。因此,我们的数据表明,这组氨基酸对枯草芽孢杆菌的渗透保护作用基于生物合成构件和能量的节省,否则这些构件和能量将不得不用于脯氨酸前体谷氨酸或脯氨酸本身合成。由于谷氨酸是脯氨酸的直接生物合成前体,我们研究了其摄取,发现GltT,一种Na(+)偶联同向转运体,是枯草芽孢杆菌中谷氨酸和天冬氨酸的主要摄取系统。总体而言,我们的数据表明枯草芽孢杆菌能多么有效地利用环境资源通过生理手段获得渗透压胁迫保护。