Slotboom D J, Lolkema J S, Konings W N
Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
J Biol Chem. 1996 Dec 6;271(49):31317-21. doi: 10.1074/jbc.271.49.31317.
Secondary glutamate transporters in neuronal and glial cells in the mammalian central nervous system remove the excitatory neurotransmitter glutamate from the synaptic cleft and prevent the extracellular glutamate concentration to rise above neurotoxic levels. Secondary structure prediction algorithms predict 6 transmembrane helices in the first half of the transporters but fail in the C-terminal half where no clear helix-loop-helix motif is resolved in the hydropathy profile of the primary sequences. A number of previous studies have emphasized the importance of the C-terminal half of the molecules for the function. Here we determine the membrane topology of the C-terminal half of the glutamate transporters by applying the phoA gene fusion technique to the homologous bacterial glutamate transporter of Bacillus stearothermophilus. High sequence conservation and very similar hydropathy profiles in the C-terminal half warrant a similar folding as in the glutamate transporters of the mammalian central nervous system. The C-terminal half contains four putative transmembrane helices. The strong hydrophobic moment and substitution moment of the most C-terminal helix X that point to opposite faces of the helix suggest that the helix faces the lipid environment with its least conserved, hydrophobic face and the interior of the protein with its well conserved, hydrophilic face. Residues that were shown before to be critical for function cluster in helix X and VII.
哺乳动物中枢神经系统中神经元和神经胶质细胞内的继发性谷氨酸转运体,可从突触间隙清除兴奋性神经递质谷氨酸,并防止细胞外谷氨酸浓度升高至神经毒性水平以上。二级结构预测算法预测转运体前半部分有6个跨膜螺旋,但在C端后半部分预测失败,因为在一级序列的亲水性图谱中没有明确解析出螺旋-环-螺旋基序。此前的多项研究强调了分子C端后半部分对功能的重要性。在这里,我们通过将phoA基因融合技术应用于嗜热脂肪芽孢杆菌的同源细菌谷氨酸转运体,确定了谷氨酸转运体C端后半部分的膜拓扑结构。C端后半部分高度的序列保守性和非常相似的亲水性图谱表明其折叠方式与哺乳动物中枢神经系统谷氨酸转运体相似。C端后半部分包含四个假定的跨膜螺旋。最C端的螺旋X的强疏水矩和取代矩指向螺旋的相反面,这表明该螺旋以其最不保守的疏水面向脂质环境,而以其保守良好的亲水面向蛋白质内部。之前显示对功能至关重要的残基聚集在螺旋X和VII中。