Suppr超能文献

中断对酿酒酵母三核苷酸重复序列扩增的稳定作用。

Stabilizing effects of interruptions on trinucleotide repeat expansions in Saccharomyces cerevisiae.

作者信息

Rolfsmeier M L, Lahue R S

机构信息

Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA.

出版信息

Mol Cell Biol. 2000 Jan;20(1):173-80. doi: 10.1128/MCB.20.1.173-180.2000.

Abstract

In most trinucleotide repeat (TNR) diseases, the primary factor determining the likelihood of expansions is the length of the TNR. In some diseases, however, stable alleles contain one to three base pair substitutions that interrupt the TNR tract. The unexpected stability of these alleles compared to the frequent expansions of perfect TNRs suggested that interruptions somehow block expansions and that expansions occur only upon loss of at least one interruption. The work in this study uses a yeast genetic assay to examine the mechanism of stabilization conferred by two interruptions of a 25-repeat tract. Expansion rates are reduced up to 90-fold compared to an uninterrupted allele. Stabilization is greatest when the interruption is replicated early on the lagging strand, relative to the rest of the TNR. Although expansions are infrequent, they are often polar, gaining new DNA within the largest available stretch of perfect repeats. Surprisingly, interruptions are always retained and sometimes even duplicated, suggesting that expansion in yeast cells can proceed without loss of the interruption. These findings support a stabilization model in which interruptions contribute in cis to reduce hairpin formation during TNR replication and thus inhibit expansion rates.

摘要

在大多数三核苷酸重复(TNR)疾病中,决定重复序列扩增可能性的主要因素是TNR的长度。然而,在某些疾病中,稳定的等位基因含有一到三个碱基对的替换,这些替换中断了TNR序列。与完美TNR频繁扩增相比,这些等位基因出人意料的稳定性表明,中断在某种程度上阻止了扩增,并且只有在至少一个中断缺失时才会发生扩增。本研究中的工作使用酵母遗传分析来研究由一个25次重复序列的两个中断所赋予的稳定机制。与不间断的等位基因相比,扩增率降低了90倍。当相对于TNR的其余部分,中断在滞后链上早期复制时,稳定性最大。虽然扩增很少见,但它们通常是极性的,在最大的可用完美重复序列区域内获得新的DNA。令人惊讶的是,中断总是被保留,有时甚至会重复,这表明酵母细胞中的扩增可以在不丢失中断的情况下进行。这些发现支持了一种稳定模型,其中中断在顺式作用中有助于减少TNR复制过程中的发夹形成,从而抑制扩增率。

相似文献

1
Stabilizing effects of interruptions on trinucleotide repeat expansions in Saccharomyces cerevisiae.
Mol Cell Biol. 2000 Jan;20(1):173-80. doi: 10.1128/MCB.20.1.173-180.2000.
3
Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae.
Mol Cell Biol. 2007 Jan;27(1):102-10. doi: 10.1128/MCB.01167-06. Epub 2006 Oct 23.
4
Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12438-43. doi: 10.1073/pnas.95.21.12438.
5
Saccharomyces cerevisiae Srs2 DNA helicase selectively blocks expansions of trinucleotide repeats.
Mol Cell Biol. 2004 Sep;24(17):7324-30. doi: 10.1128/MCB.24.17.7324-7330.2004.
6
Mismatch repair blocks expansions of interrupted trinucleotide repeats in yeast.
Mol Cell. 2000 Dec;6(6):1501-7. doi: 10.1016/s1097-2765(00)00146-5.
8
Rev1 enhances CAG.CTG repeat stability in Saccharomyces cerevisiae.
DNA Repair (Amst). 2007 Jan 4;6(1):38-44. doi: 10.1016/j.dnarep.2006.08.002. Epub 2006 Sep 15.
9
Expansion and length-dependent fragility of CTG repeats in yeast.
Science. 1998 Feb 6;279(5352):853-6. doi: 10.1126/science.279.5352.853.
10
Cis-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae.
Genetics. 2001 Apr;157(4):1569-79. doi: 10.1093/genetics/157.4.1569.

引用本文的文献

2
Inherent instability of simple DNA repeats shapes an evolutionarily stable distribution of repeat lengths.
bioRxiv. 2025 Jan 10:2025.01.09.631797. doi: 10.1101/2025.01.09.631797.
4
Expansions and contractions of the FMR1 CGG repeat in 5,508 transmissions of normal, intermediate, and premutation alleles.
Am J Med Genet A. 2019 Jul;179(7):1148-1156. doi: 10.1002/ajmg.a.61165. Epub 2019 May 2.
5
Large Interruptions of GAA Repeat Expansion Mutations in Friedreich Ataxia Are Very Rare.
Front Cell Neurosci. 2018 Nov 21;12:443. doi: 10.3389/fncel.2018.00443. eCollection 2018.
6
Characterization of Duck () Short Tandem Repeat Variation by Population-Scale Genome Resequencing.
Front Genet. 2018 Oct 30;9:520. doi: 10.3389/fgene.2018.00520. eCollection 2018.
7
Cells of Matter- Models for Myotonic Dystrophy.
Front Neurol. 2018 May 23;9:361. doi: 10.3389/fneur.2018.00361. eCollection 2018.
8
9
Inheritance patterns of ATCCT repeat interruptions in spinocerebellar ataxia type 10 (SCA10) expansions.
PLoS One. 2017 Apr 19;12(4):e0175958. doi: 10.1371/journal.pone.0175958. eCollection 2017.
10
Myotonic dystrophy: disease repeat range, penetrance, age of onset, and relationship between repeat size and phenotypes.
Curr Opin Genet Dev. 2017 Jun;44:30-37. doi: 10.1016/j.gde.2017.01.007. Epub 2017 Feb 14.

本文引用的文献

1
The distribution of the numbers of mutants in bacterial populations.
J Genet. 1949 Dec;49(3):264-85. doi: 10.1007/BF02986080.
2
Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12438-43. doi: 10.1073/pnas.95.21.12438.
3
Mapping the polarity of changes that occur in interrupted CAG repeat tracts in yeast.
Mol Cell Biol. 1998 Aug;18(8):4597-604. doi: 10.1128/MCB.18.8.4597.
5
The Friedreich ataxia GAA triplet repeat: premutation and normal alleles.
Hum Mol Genet. 1997 Aug;6(8):1261-6. doi: 10.1093/hmg/6.8.1261.
7
Repeat expansion--all in a flap?
Nat Genet. 1997 Jun;16(2):116-8. doi: 10.1038/ng0697-116.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验