Nebenführ A, Gallagher L A, Dunahay T G, Frohlick J A, Mazurkiewicz A M, Meehl J B, Staehelin L A
Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
Plant Physiol. 1999 Dec;121(4):1127-42. doi: 10.1104/pp.121.4.1127.
The Golgi apparatus in plant cells consists of a large number of independent Golgi stack/trans-Golgi network/Golgi matrix units that appear to be randomly distributed throughout the cytoplasm. To study the dynamic behavior of these Golgi units in living plant cells, we have cloned a cDNA from soybean (Glycine max), GmMan1, encoding the resident Golgi protein alpha-1,2 mannosidase I. The predicted protein of approximately 65 kD shows similarity of general structure and sequence (45% identity) to class I animal and fungal alpha-1,2 mannosidases. Expression of a GmMan1::green fluorescent protein fusion construct in tobacco (Nicotiana tabacum) Bright Yellow 2 suspension-cultured cells revealed the presence of several hundred to thousands of fluorescent spots. Immuno-electron microscopy demonstrates that these spots correspond to individual Golgi stacks and that the fusion protein is largely confined to the cis-side of the stacks. In living cells, the stacks carry out stop-and-go movements, oscillating rapidly between directed movement and random "wiggling." Directed movement (maximal velocity 4.2 microm/s) is related to cytoplasmic streaming, occurs along straight trajectories, and is dependent upon intact actin microfilaments and myosin motors, since treatment with cytochalasin D or butanedione monoxime blocks the streaming motion. In contrast, microtubule-disrupting drugs appear to have a small but reproducible stimulatory effect on streaming behavior. We present a model that postulates that the stop-and-go motion of Golgi-trans-Golgi network units is regulated by "stop signals" produced by endoplasmic reticulum export sites and locally expanding cell wall domains to optimize endoplasmic reticulum to Golgi and Golgi to cell wall trafficking.
植物细胞中的高尔基体由大量独立的高尔基体堆叠/反式高尔基体网络/高尔基体基质单元组成,这些单元似乎随机分布于整个细胞质中。为了研究这些高尔基体单元在活植物细胞中的动态行为,我们从大豆(Glycine max)中克隆了一个cDNA,即GmMan1,它编码驻留高尔基体蛋白α-1,2甘露糖苷酶I。预测的约65 kD的蛋白质在总体结构和序列上(45%的同一性)与I类动物和真菌α-1,2甘露糖苷酶相似。在烟草(Nicotiana tabacum)亮黄2悬浮培养细胞中表达GmMan1::绿色荧光蛋白融合构建体,发现有数百到数千个荧光斑点。免疫电子显微镜显示这些斑点对应于单个高尔基体堆叠,并且融合蛋白主要局限于堆叠的顺面。在活细胞中,堆叠进行走走停停的运动,在定向运动和随机“摆动”之间快速振荡。定向运动(最大速度4.2微米/秒)与细胞质流动有关,沿直线轨迹发生,并且依赖于完整的肌动蛋白微丝和肌球蛋白马达,因为用细胞松弛素D或丁二酮单肟处理会阻断流动运动。相反,破坏微管的药物似乎对流动行为有微小但可重复的刺激作用。我们提出了一个模型,假定高尔基体-反式高尔基体网络单元的走走停停运动受内质网输出位点和局部扩展的细胞壁区域产生的“停止信号”调节,以优化内质网到高尔基体以及高尔基体到细胞壁的运输。