Suppr超能文献

Estrogen-nucleic acid adducts: dissection of the reaction of 3, 4-estrone quinone and its radical anion and radical cation with deoxynucleosides and DNA.

作者信息

Akanni A, Abul-Hajj Y J

机构信息

Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA.

出版信息

Chem Res Toxicol. 1999 Dec;12(12):1247-53. doi: 10.1021/tx9900932.

Abstract

Previous studies from our laboratory have shown that 3,4-estrone quinone (3,4-EQ) can redox-cycle and is capable of inducing single-strand DNA breaks in MCF-7 breast cancer cells, as well as reacting with various deoxynucleosides to give several estrogen-nucleic acid adducts. While reactions of 3,4-EQ with all the deoxynucleosides under acidic conditions gave only the N7-Gua adduct, which could proceed by Michael addition, reactions of 3,4-EQ under reductive conditions gave several adducts, including the N7-Gua, C8-Ade, C8-Gua, N3-Thy, and N4-Cyt adducts, suggesting the involvement of a 3,4-EQ radical species. The question as to which of the reactive species, the estrogen quinone or the estrogen semiquinone, that is responsible for estrogen's genotoxic activity has been the subject of recent investigations in several laboratories. To explore this in more detail, we carried out studies on the reactivity of 3,4-EQ, the 3,4-EQ radical anion, and the 3, 4-EQ radical cation with both deoxynucleosides and calf thymus DNA under different pH conditions. Both stable and unstable adducts with guanine and thymine were observed from reactions with DNA. Although adduct levels were somewhat different, the adduct profiles obtained from reactions of 3,4-EQ and its radical anion with both DNA and deoxynucleosides were quite similar and were found to be significantly different from product profiles obtained from reactions with the 3,4-EQ radical cation. Studies conducted with the human breast tumor cell line MCF-7 demonstrated the formation of the N7- and C8-Gua adducts in which the profiles were similar to those obtained from reactions of 3,4-EQ with DNA. These results suggest that the reactive species that is responsible for adduct formation under physiological conditions is most likely to be the 3,4-EQ radical anion.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验