Suppr超能文献

辅酶结合位点的双残基取代解释了酵母和人类甲醛脱氢酶之间不同的动力学特性。

A double residue substitution in the coenzyme-binding site accounts for the different kinetic properties between yeast and human formaldehyde dehydrogenases.

作者信息

Fernández M R, Biosca J A, Torres D, Crosas B, Parés X

机构信息

Department of Biochemistry, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.

出版信息

J Biol Chem. 1999 Dec 31;274(53):37869-75. doi: 10.1074/jbc.274.53.37869.

Abstract

Glutathione-dependent formaldehyde dehydrogenase (FALDH) is the main enzymatic system for formaldehyde detoxification in all eukaryotic and many prokaryotic organisms. The enzyme of yeasts and some bacteria exhibits about 10-fold higher k(cat) and K(m) values than those of the enzyme from animals and plants. Typically Thr-269 and Glu-267 are found in the coenzyme-binding site of yeast FALDH, but Ile-269 and Asp-267 are present in the FALDH of animals. By site-directed mutagenesis we have prepared the T269I and the D267E mutants and the D267E/T269I double mutant of Saccharomyces cerevisiae FALDH with the aim of investigating the role of these residues in the kinetics. The T269I and the D267E mutants have identical kinetic properties as compared with the wild-type enzyme, although T269I is highly unstable. In contrast, the D267E/T269I double mutant is stable and shows low K(m) (2.5 microM) and low k(cat) (285 min(-1)) values with S-hydroxymethylglutathione, similar to those of the human enzyme. Therefore, the simultaneous exchange at both residues is the structural basis of the two distinct FALDH kinetic types. The local structural perturbations imposed by the substitutions are suggested by molecular modeling studies. Finally, we have studied the effect of FALDH deletion and overexpression on the growth of S. cerevisiae. It is concluded that the FALDH gene is not essential but enhances the resistance against formaldehyde (0.3-1 mM). Moreover, the wild-type enzyme (with high k(cat) and K(m)) provides more resistance than the double mutant (with low k(cat) and K(m)).

摘要

谷胱甘肽依赖性甲醛脱氢酶(FALDH)是所有真核生物和许多原核生物中甲醛解毒的主要酶系统。酵母和某些细菌的这种酶的催化常数(k(cat))和米氏常数(K(m))值比动植物的酶高出约10倍。通常在酵母FALDH的辅酶结合位点中发现苏氨酸-269(Thr-269)和谷氨酸-267(Glu-267),但在动物的FALDH中存在异亮氨酸-269(Ile-269)和天冬氨酸-267(Asp-267)。通过定点诱变,我们制备了酿酒酵母FALDH的T269I突变体、D267E突变体和D267E/T269I双突变体,旨在研究这些残基在动力学中的作用。尽管T269I非常不稳定,但与野生型酶相比,T269I和D267E突变体具有相同的动力学性质。相反,D267E/T269I双突变体是稳定的,并且与S-羟甲基谷胱甘肽反应时显示出低K(m)(2.5微摩尔)和低k(cat)(285分钟(-1))值,类似于人类酶的值。因此,两个残基的同时交换是两种不同FALDH动力学类型的结构基础。分子模拟研究表明了这些取代所带来的局部结构扰动。最后,我们研究了FALDH缺失和过表达对酿酒酵母生长的影响。得出的结论是,FALDH基因不是必需的,但能增强对甲醛(0.3 - 1毫摩尔)的抗性。此外,野生型酶(具有高k(cat)和K(m))比双突变体(具有低k(cat)和K(m))提供更强的抗性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验