Suppr超能文献

利用Cre-loxP技术构建小鼠染色体:范围、效率及体细胞应用

Engineering mouse chromosomes with Cre-loxP: range, efficiency, and somatic applications.

作者信息

Zheng B, Sage M, Sheppeard E A, Jurecic V, Bradley A

机构信息

Department of Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.

出版信息

Mol Cell Biol. 2000 Jan;20(2):648-55. doi: 10.1128/MCB.20.2.648-655.2000.

Abstract

Chromosomal rearrangements are important resources for genetic studies. Recently, a Cre-loxP-based method to introduce defined chromosomal rearrangements (deletions, duplications, and inversions) into the mouse genome (chromosome engineering) has been established. To explore the limits of this technology systematically, we have evaluated this strategy on mouse chromosome 11. Although the efficiency of Cre-loxP-mediated recombination decreases with increasing genetic distance when the two endpoints are on the same chromosome, the efficiency is not limiting even when the genetic distance is maximized. Rearrangements encompassing up to three quarters of chromosome 11 have been constructed in mouse embryonic stem (ES) cells. While larger deletions may lead to ES cell lethality, smaller deletions can be produced very efficiently both in ES cells and in vivo in a tissue- or cell-type-specific manner. We conclude that any chromosomal rearrangement can be made in ES cells with the Cre-loxP strategy provided that it does not affect cell viability. In vivo chromosome engineering can be potentially used to achieve somatic losses of heterozygosity in creating mouse models of human cancers.

摘要

染色体重排是遗传学研究的重要资源。最近,一种基于Cre-loxP的方法已被建立,用于将特定的染色体重排(缺失、重复和倒位)引入小鼠基因组(染色体工程)。为了系统地探索该技术的局限性,我们在小鼠11号染色体上评估了这一策略。当两个端点位于同一条染色体上时,虽然Cre-loxP介导的重组效率会随着遗传距离的增加而降低,但即使遗传距离最大化,该效率也不会成为限制因素。在小鼠胚胎干细胞(ES细胞)中已经构建了包含多达四分之三11号染色体的重排。虽然较大的缺失可能导致ES细胞致死,但较小的缺失可以在ES细胞和体内以组织或细胞类型特异性的方式非常高效地产生。我们得出结论,只要不影响细胞活力,任何染色体重排在ES细胞中都可以通过Cre-loxP策略实现。体内染色体工程有可能用于在创建人类癌症小鼠模型时实现杂合性的体细胞丢失。

相似文献

1
Engineering mouse chromosomes with Cre-loxP: range, efficiency, and somatic applications.
Mol Cell Biol. 2000 Jan;20(2):648-55. doi: 10.1128/MCB.20.2.648-655.2000.
2
Engineering chromosomal rearrangements in mice.
Nat Rev Genet. 2001 Oct;2(10):780-90. doi: 10.1038/35093564.
3
High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP.
Nat Genet. 2000 Jun;25(2):139-40. doi: 10.1038/75973.
6
Rapid induction of large chromosomal deletions by a Cre/inverted loxP system in mouse ES Cell hybrids.
J Mol Biol. 2008 Apr 25;378(2):328-36. doi: 10.1016/j.jmb.2008.01.065. Epub 2008 Feb 2.
8
Cre-mediated site-specific translocation between nonhomologous mouse chromosomes.
Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7376-80. doi: 10.1073/pnas.92.16.7376.
9
A high-efficiency Cre/loxP-based system for construction of adenoviral vectors.
Hum Gene Ther. 1999 Nov 1;10(16):2667-72. doi: 10.1089/10430349950016708.

引用本文的文献

1
Targeting and in C-fiber low threshold mechanoreceptor: limitation of -IRES-.
bioRxiv. 2025 Jul 31:2025.07.26.666969. doi: 10.1101/2025.07.26.666969.
2
Rbpj deletion in hepatic progenitor cells attenuates endothelial responses and fibrosis in DDC-fed mice.
Hepatol Commun. 2025 Jun 19;9(7). doi: 10.1097/HC9.0000000000000745. eCollection 2025 Jul 1.
3
Systematic optimization and prediction of cre recombinase for precise genome editing in mice.
Genome Biol. 2025 Apr 4;26(1):85. doi: 10.1186/s13059-025-03560-3.
4
Deletion of 17p in cancers: Guilt by (p53) association.
Oncogene. 2025 Mar;44(10):637-651. doi: 10.1038/s41388-025-03300-8. Epub 2025 Feb 18.
5
Multiplex generation and single-cell analysis of structural variants in mammalian genomes.
Science. 2025 Jan 31;387(6733):eado5978. doi: 10.1126/science.ado5978.
6
FastAd: A versatile toolkit for rapid generation of single adenoviruses or diverse adenoviral vector libraries.
Mol Ther Methods Clin Dev. 2024 Oct 18;32(4):101356. doi: 10.1016/j.omtm.2024.101356. eCollection 2024 Dec 12.
7
Engineering structural variants to interrogate genome function.
Nat Genet. 2024 Dec;56(12):2623-2635. doi: 10.1038/s41588-024-01981-7. Epub 2024 Nov 12.
8
Exomap1 mouse: A transgenic model for studies of exosome biology.
Extracell Vesicle. 2023 Dec;2. doi: 10.1016/j.vesic.2023.100030. Epub 2023 Oct 10.
9
Dynamics in Cre-loxP site-specific recombination.
Curr Opin Struct Biol. 2024 Oct;88:102878. doi: 10.1016/j.sbi.2024.102878. Epub 2024 Jul 18.

本文引用的文献

1
Engineering a mouse balancer chromosome.
Nat Genet. 1999 Aug;22(4):375-8. doi: 10.1038/11949.
2
A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice.
Nucleic Acids Res. 1999 Jun 1;27(11):2354-60. doi: 10.1093/nar/27.11.2354.
3
A general model for site-specific recombination by the integrase family recombinases.
Nucleic Acids Res. 1999 Feb 15;27(4):930-41. doi: 10.1093/nar/27.4.930.
4
Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits.
Trends Genet. 1998 Oct;14(10):417-22. doi: 10.1016/s0168-9525(98)01555-8.
5
Embryonic lethality and tumorigenesis caused by segmental aneuploidy on mouse chromosome 11.
Genetics. 1998 Nov;150(3):1155-68. doi: 10.1093/genetics/150.3.1155.
7
Inducible gene targeting in mice using the Cre/lox system.
Methods. 1998 Apr;14(4):381-92. doi: 10.1006/meth.1998.0593.
8
X-ray-induced mutations in mouse embryonic stem cells.
Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1114-9. doi: 10.1073/pnas.95.3.1114.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验