Zheng B, Sage M, Sheppeard E A, Jurecic V, Bradley A
Department of Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
Mol Cell Biol. 2000 Jan;20(2):648-55. doi: 10.1128/MCB.20.2.648-655.2000.
Chromosomal rearrangements are important resources for genetic studies. Recently, a Cre-loxP-based method to introduce defined chromosomal rearrangements (deletions, duplications, and inversions) into the mouse genome (chromosome engineering) has been established. To explore the limits of this technology systematically, we have evaluated this strategy on mouse chromosome 11. Although the efficiency of Cre-loxP-mediated recombination decreases with increasing genetic distance when the two endpoints are on the same chromosome, the efficiency is not limiting even when the genetic distance is maximized. Rearrangements encompassing up to three quarters of chromosome 11 have been constructed in mouse embryonic stem (ES) cells. While larger deletions may lead to ES cell lethality, smaller deletions can be produced very efficiently both in ES cells and in vivo in a tissue- or cell-type-specific manner. We conclude that any chromosomal rearrangement can be made in ES cells with the Cre-loxP strategy provided that it does not affect cell viability. In vivo chromosome engineering can be potentially used to achieve somatic losses of heterozygosity in creating mouse models of human cancers.
染色体重排是遗传学研究的重要资源。最近,一种基于Cre-loxP的方法已被建立,用于将特定的染色体重排(缺失、重复和倒位)引入小鼠基因组(染色体工程)。为了系统地探索该技术的局限性,我们在小鼠11号染色体上评估了这一策略。当两个端点位于同一条染色体上时,虽然Cre-loxP介导的重组效率会随着遗传距离的增加而降低,但即使遗传距离最大化,该效率也不会成为限制因素。在小鼠胚胎干细胞(ES细胞)中已经构建了包含多达四分之三11号染色体的重排。虽然较大的缺失可能导致ES细胞致死,但较小的缺失可以在ES细胞和体内以组织或细胞类型特异性的方式非常高效地产生。我们得出结论,只要不影响细胞活力,任何染色体重排在ES细胞中都可以通过Cre-loxP策略实现。体内染色体工程有可能用于在创建人类癌症小鼠模型时实现杂合性的体细胞丢失。