Stapelfeldt H, Skibsted L H
Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark.
J Dairy Res. 1999 Nov;66(4):545-58. doi: 10.1017/s0022029999003714.
beta-Lactoglobulin (beta-lg) in aqueous solution under pressure showed a marked depolarization of intrinsic fluorescence assigned to a gradually increased rotational diffusion of tryptophyl moieties in pressure-unfolded states. The corresponding change in anisotropy provided a new and more accurate method for determining denaturation volume which, for beta-lg in neutral aqueous solution with ionic strength 0.16 (NaCl) at 25 degrees C, was delta V degree = -73 (SE 3) ml mol-1, corresponding to half denaturation at 123 MPa. The pressure unfolding led to exposure of hydrophobic regions to the protein-water interface that could be probed by fluorescence intensity of a beta-lg-1-anilinonaphthalene-8-sulphonic acid (ANS) complex with 1:1 stoichiometry, as determined by Job's method of continuous variation. The unfolding of beta-lg impaired the binding capacity of the inner calyx, with a reduction in binding capacity of 50% at 50 MPa, as shown by decreasing cis-parinaric acid fluorescence, decreasing anisotropy and decreasing radiationless energy transfer from tryptophans to this probe with increasing pressure. The pressure-induced reversible exposure of hydrophobic groups to the protein-water interface may, at least partly, explain the initial aggregation reactions, evident from increased Rayleigh scattering from approximately 50 MPa, prior to irreversible pressure-induced gel formation of beta-lg. Using results from this and previous studies, we propose a three step pressure denaturation model for beta-lg for neutral solution at ambient temperature, including an initial pressure-melted state (up to 50 MPa) with partial collapse of the inner calyx and solvent exposure of the free thiol group, followed by a reversible denaturation with exposure of hydrophobic regions (half denaturation at 123 MPa) and with irreversible denaturation with thiol-disulphide exchange becoming increasingly important at higher pressures. Effects of pressure on beta-lg, as measured by fluorescence depolarization, were found for the reversible denaturation steps to be similar to the effects of chemical denaturants but different with respect to shift in ANS emission maxima.
在压力作用下,水溶液中的β-乳球蛋白(β-lg)呈现出固有荧光的显著去极化,这归因于色氨酸部分在压力展开状态下逐渐增加的旋转扩散。各向异性的相应变化为确定变性体积提供了一种新的、更准确的方法。对于25℃时离子强度为0.16(NaCl)的中性水溶液中的β-lg,变性体积ΔV° = -73(标准误差3)ml·mol⁻¹,对应于123 MPa下的半变性。压力展开导致疏水区域暴露于蛋白质-水界面,这可以通过β-lg与1-苯胺基萘-8-磺酸(ANS)以1:1化学计量比形成的复合物的荧光强度来探测,这是通过乔布连续变化法确定的。β-lg的展开损害了内萼的结合能力,在50 MPa时结合能力降低了50%,这表现为顺式十八碳四烯酸荧光强度降低、各向异性降低以及随着压力增加色氨酸向该探针的无辐射能量转移减少。压力诱导的疏水基团向蛋白质-水界面的可逆暴露可能至少部分解释了初始聚集反应,这从大约50 MPa时瑞利散射增加可以明显看出,这发生在β-lg不可逆压力诱导凝胶形成之前。利用本研究和先前研究的结果,我们提出了一个适用于环境温度下中性溶液中β-lg的三步压力变性模型,包括一个初始压力熔融状态(高达50 MPa),此时内萼部分塌陷且游离巯基暴露于溶剂中,接着是疏水区域暴露的可逆变性(123 MPa下的半变性),以及在更高压力下巯基-二硫键交换变得越来越重要的不可逆变性。通过荧光去极化测量发现,压力对β-lg可逆变性步骤的影响与化学变性剂的影响相似,但在ANS发射最大值的位移方面有所不同。