Suppr超能文献

还原热点假说:最新进展。

The reductive hotspot hypothesis: an update.

作者信息

de Grey A D

机构信息

Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, United Kingdom.

出版信息

Arch Biochem Biophys. 2000 Jan 1;373(1):295-301. doi: 10.1006/abbi.1999.1509.

Abstract

The mitochondrial free radical theory of aging is seriously challenged by the finding that mutant mtDNA never becomes abundant in vivo, a result disputed only in experiments using novel PCR variants whose quantitative accuracy is widely doubted. However, evidence continues to mount that mitochondria are the crucial site of free radical damage in vivo, most notably that mice lacking the nonmitochondrial isoforms of superoxide dismutase are healthy. It is thus important to determine whether a low level of mutant mtDNA could have serious systemic effects. This possibility exists because of the observed mosaic distribution of mutant mtDNA: some cells (or muscle fiber segments) lack any aerobic respiration. Such cells are presumed to satisfy their ATP needs by glycolysis. In vitro, however, NADH recycling by transmembrane pyruvate/lactate exchange does not suffice: cells only survive if they can up-regulate the plasma membrane oxidoreductase (PMOR). The PMOR's physiological electron acceptor is unknown. It was proposed recently (de Grey, A. D. N. J. (1998) J. Anti-Aging Med. 1(1), 53-66) that a prominent in vivo acceptor from these mitochondrially mutant cells may be oxygen, forming extracellular superoxide. The mosaic ("hotspot") distribution of this superoxide would limit its dismutation by extracellular superoxide dismutase; it may thus reduce transition metals leading to oxidation of circulating material, such as LDL. This would raise systemic oxidative stress, greatly amplifying the damage done by the originating mitochondrially mutant cells. This model, now known as the "reductive hotspot hypothesis," has recently gained much indirect experimental support; several direct tests of it are also feasible.

摘要

衰老的线粒体自由基理论受到了严重挑战,因为有研究发现突变型线粒体DNA(mtDNA)在体内从未大量出现,只有在使用新型聚合酶链式反应(PCR)变体的实验中才出现争议,而这些变体的定量准确性广受质疑。然而,越来越多的证据表明线粒体是体内自由基损伤的关键部位,最显著的是缺乏超氧化物歧化酶非线粒体同工型的小鼠是健康的。因此,确定低水平的突变型mtDNA是否会产生严重的全身影响非常重要。这种可能性是存在的,因为观察到突变型mtDNA呈镶嵌分布:一些细胞(或肌纤维段)缺乏任何有氧呼吸。这些细胞被认为通过糖酵解来满足其ATP需求。然而,在体外,通过跨膜丙酮酸/乳酸交换进行的NADH循环是不够的:细胞只有在能够上调质膜氧化还原酶(PMOR)时才能存活。PMOR的生理电子受体尚不清楚。最近有人提出(德格雷,A.D.N.J.(1998年)《抗衰老医学杂志》1(1),53 - 66),这些线粒体突变细胞在体内的一个重要受体可能是氧气,形成细胞外超氧化物。这种超氧化物的镶嵌(“热点”)分布会限制其被细胞外超氧化物歧化酶歧化;因此它可能会减少过渡金属,导致循环物质如低密度脂蛋白(LDL)氧化。这将增加全身氧化应激,极大地放大最初的线粒体突变细胞所造成的损伤。这个模型,现在被称为“还原热点假说”,最近获得了许多间接实验支持;对其进行的一些直接测试也是可行的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验