Suppr超能文献

衰老过程中质膜的辅酶Q依赖性功能。

Coenzyme Q-dependent functions of plasma membrane in the aging process.

作者信息

Navas Plácido, Villalba José Manuel, Lenaz Giorgio

机构信息

Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Sevilla, Spain.

出版信息

Age (Dordr). 2005 Jun;27(2):139-46. doi: 10.1007/s11357-005-1632-z. Epub 2005 Dec 10.

Abstract

Coenzyme Q (Q) is reduced in plasma membrane and mitochondria by NAD(P)H-dependent reductases providing reducing equivalents to maintain both respiratory chain and antioxidant protection. Reactive oxygen species (ROS) are accumulated in the aging process originating mainly in mitochondria but also in other membranes, such as plasma membrane partially by the loss of electrons from the semiquinone. The reduction of Q by NAD(P)H-dependent reductases in plasma membrane is responsible for providing its antioxidant capacity, preventing both the lipid peroxidation chain and the activation of the ceramide-dependent apoptosis pathway. Both Q content and its reductases are decreased in plasma membrane of aging mammals. Calorie restriction, which extends mammal life span, increases the content of Q in the plasma membrane and also activates Q reductases in this membrane. Both lipid peroxidation and ceramide production are decreased in the plasma membrane in calorie-restricted animals. Plasma membrane is, then, an important cellular component to control the aging process through its concentration and redox state of Q.

摘要

辅酶Q(Q)在质膜和线粒体中被NAD(P)H依赖性还原酶还原,这些还原酶提供还原当量以维持呼吸链和抗氧化保护。活性氧(ROS)在衰老过程中积累,主要源于线粒体,但也存在于其他膜中,如质膜,部分原因是半醌失去电子。质膜中NAD(P)H依赖性还原酶对Q的还原负责提供其抗氧化能力,防止脂质过氧化链和神经酰胺依赖性凋亡途径的激活。衰老哺乳动物的质膜中Q含量及其还原酶均降低。限制热量摄入可延长哺乳动物寿命,增加质膜中Q的含量,并激活该膜中的Q还原酶。在热量限制的动物中,质膜中的脂质过氧化和神经酰胺生成均减少。因此,质膜是通过其Q的浓度和氧化还原状态来控制衰老过程的重要细胞成分。

相似文献

1
Coenzyme Q-dependent functions of plasma membrane in the aging process.
Age (Dordr). 2005 Jun;27(2):139-46. doi: 10.1007/s11357-005-1632-z. Epub 2005 Dec 10.
2
The importance of plasma membrane coenzyme Q in aging and stress responses.
Mitochondrion. 2007 Jun;7 Suppl:S34-40. doi: 10.1016/j.mito.2007.02.010. Epub 2007 Mar 16.
3
A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats.
Can J Physiol Pharmacol. 2020 Jan;98(1):29-34. doi: 10.1139/cjpp-2019-0281. Epub 2019 Sep 19.
5
An analysis of the role of coenzyme Q in free radical generation and as an antioxidant.
Biochem Cell Biol. 1992 Jun;70(6):390-403. doi: 10.1139/o92-061.
6
Coenzyme Q(1) depletes NAD(P)H and impairs recycling of ascorbate in astrocytes.
Brain Res. 2006 Mar 17;1078(1):9-18. doi: 10.1016/j.brainres.2006.01.068. Epub 2006 Feb 24.
7
Plasma membrane redox system in the control of stress-induced apoptosis.
Antioxid Redox Signal. 2000 Summer;2(2):213-30. doi: 10.1089/ars.2000.2.2-213.
8
Mouse liver plasma membrane redox system activity is altered by aging and modulated by calorie restriction.
Age (Dordr). 2005 Jun;27(2):153-60. doi: 10.1007/s11357-005-2726-3. Epub 2005 Dec 10.
10
Age-dependent effect of every-other-day feeding and aerobic exercise in ubiquinone levels and related antioxidant activities in mice muscle.
J Gerontol A Biol Sci Med Sci. 2015 Jan;70(1):33-43. doi: 10.1093/gerona/glu002. Epub 2014 Feb 4.

引用本文的文献

1
Understanding coenzyme Q.
Physiol Rev. 2024 Oct 1;104(4):1533-1610. doi: 10.1152/physrev.00040.2023. Epub 2024 May 9.
2
Coenzyme Q10 and Its Therapeutic Potencies Against COVID-19 and Other Similar Infections: A Molecular Review.
Adv Pharm Bull. 2023 Mar;13(2):233-243. doi: 10.34172/apb.2023.026. Epub 2021 Nov 7.
3
Coenzyme Q at the Hinge of Health and Metabolic Diseases.
Antioxidants (Basel). 2021 Nov 8;10(11):1785. doi: 10.3390/antiox10111785.
4
Metabolic Targets of Coenzyme Q10 in Mitochondria.
Antioxidants (Basel). 2021 Mar 26;10(4):520. doi: 10.3390/antiox10040520.
5
The diverse functionality of NQO1 and its roles in redox control.
Redox Biol. 2021 May;41:101950. doi: 10.1016/j.redox.2021.101950. Epub 2021 Mar 20.
6
Functions of NQO1 in Cellular Protection and CoQ Metabolism and its Potential Role as a Redox Sensitive Molecular Switch.
Front Physiol. 2017 Aug 24;8:595. doi: 10.3389/fphys.2017.00595. eCollection 2017.
7
Calorie restriction as an intervention in ageing.
J Physiol. 2016 Apr 15;594(8):2043-60. doi: 10.1113/JP270543. Epub 2016 Jan 3.
8
Dietary fat modifies mitochondrial and plasma membrane apoptotic signaling in skeletal muscle of calorie-restricted mice.
Age (Dordr). 2013 Dec;35(6):2027-44. doi: 10.1007/s11357-012-9492-9. Epub 2012 Nov 20.

本文引用的文献

2
ROS production and Glut1 activity in two human megakaryocytic cell lines.
Biofactors. 2004;20(4):223-33. doi: 10.1002/biof.5520200406.
4
Plasma membrane electron transport. A metabolic process deserving of renewed interest.
Biofactors. 2004;20(4):183-7. doi: 10.1002/biof.5520200401.
5
Characterization of VDAC1 as a plasma membrane NADH-oxidoreductase.
Biofactors. 2004;21(1-4):215-21. doi: 10.1002/biof.552210143.
8
Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells.
J Biol Chem. 2004 Aug 13;279(33):34643-54. doi: 10.1074/jbc.M400078200. Epub 2004 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验