Suppr超能文献

噬菌体T4的自我组装:重组gp2在体外重组成感染性噬菌体。

Bacteriophage T4 self-assembly: in vitro reconstitution of recombinant gp2 into infectious phage.

作者信息

Wang G R, Vianelli A, Goldberg E B

机构信息

Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.

出版信息

J Bacteriol. 2000 Feb;182(3):672-9. doi: 10.1128/JB.182.3.672-679.2000.

Abstract

T4 gene 2 mutants have a pleiotropic phenotype: degradation of injected phage DNA by exonuclease V (ExoV) in the recBCD(+) host cell cytoplasm and a low burst size due, at least in part, to a decreased ability for head-to-tail (H-T) joining. The more N terminal the mutation, the more pronounced is the H-T joining defect. We have overexpressed and purified the recombinant gene 2 product (rgp2) to homogeneity in order to test its role in H-T joining, during in vitro reconstitution. When we mix extracts of heads from a gp2(+) phage infection (H(+)) with tails from a gp2(+) or gp2(-) phage infection (T(+) or T(-)), the H-T joining is fast and all of the reconstituted phage grow equally well on cells with or without ExoV activity. When heads from gene 2 amber mutants (H(-)) are used, addition of rgp2 is required for H-T joining. In this case, H-T joining is slow and only about 10% of the reconstituted phage can form plaques on ExoV(+) cells. When extracts of heads with different gene 2 amber mutations are mixed with extracts of tails (with a gene 2 amber mutation) in the presence of rgp2, we find that the size of the gp2 amber peptide of the head extract is inversely related to the fraction of reconstituted phage with a 2(+) phenotype. We conclude that free rgp2 is biologically active and has a direct role in H-T joining but that the process is different from H-T joining promoted by natural gp2 that is incorporated into the head in vivo. Furthermore, it seems that gp2 has a domain which binds it to the head. Thus, the presence of the longer gp2am mutants (with this domain) inhibits their replacement by full-length rgp2.

摘要

T4基因2突变体具有多效性表型:在recBCD(+)宿主细胞胞质中,外切核酸酶V(ExoV)会降解注入的噬菌体DNA,并且其爆发量较低,至少部分原因是头对尾(H-T)连接能力下降。突变越靠近N端,H-T连接缺陷就越明显。为了测试其在体外重组过程中H-T连接中的作用,我们已将重组基因2产物(rgp2)过量表达并纯化至同质状态。当我们将来自gp2(+)噬菌体感染的头部提取物(H(+))与来自gp2(+)或gp2(-)噬菌体感染的尾部提取物(T(+)或T(-))混合时,H-T连接很快,并且所有重组噬菌体在具有或不具有ExoV活性的细胞上生长情况相同。当使用来自基因2琥珀突变体的头部(H(-))时,H-T连接需要添加rgp2。在这种情况下,H-T连接缓慢,并且只有约10%的重组噬菌体能够在ExoV(+)细胞上形成噬菌斑。当在rgp2存在的情况下,将具有不同基因2琥珀突变的头部提取物与尾部提取物(具有基因2琥珀突变)混合时,我们发现头部提取物中gp2琥珀肽的大小与具有2(+)表型的重组噬菌体的比例呈负相关。我们得出结论,游离的rgp2具有生物活性,并且在H-T连接中具有直接作用,但该过程与体内整合到头部的天然gp2促进的H-T连接不同。此外,似乎gp2有一个将其与头部结合的结构域。因此,较长的gp2am突变体(具有该结构域)的存在会抑制它们被全长rgp2取代。

相似文献

1
Bacteriophage T4 self-assembly: in vitro reconstitution of recombinant gp2 into infectious phage.
J Bacteriol. 2000 Feb;182(3):672-9. doi: 10.1128/JB.182.3.672-679.2000.
2
Bacteriophage T4 gp2 interferes with cell viability and with bacteriophage lambda Red recombination.
J Bacteriol. 1999 Feb;181(4):1352-5. doi: 10.1128/JB.181.4.1352-1355.1999.
3
Gp4 is a nuclease required for morphogenesis of T4-like bacteriophages.
Virology. 2020 Apr;543:7-12. doi: 10.1016/j.virol.2020.01.008. Epub 2020 Jan 18.
4
The characterization of a set of amber mutants of bacteriophage T5.
J Gen Virol. 1986 Aug;67 ( Pt 8):1663-72. doi: 10.1099/0022-1317-67-8-1663.
5
Morphogenetic structures present in lysates of amber mutants of bacteriophage Mu.
Virology. 1985 Jun;143(2):485-504. doi: 10.1016/0042-6822(85)90388-5.
6
Modulation of bacteriophage T4 capsid size.
Virology. 1996 Jul 1;221(1):67-77. doi: 10.1006/viro.1996.0353.
7
Bacteriophage T4 self-assembly: localization of gp3 and its role in determining tail length.
J Bacteriol. 2000 Feb;182(3):680-8. doi: 10.1128/JB.182.3.680-688.2000.
8
The asiA gene product of bacteriophage T4 is required for middle mode RNA synthesis.
J Bacteriol. 1994 Jul;176(13):3956-65. doi: 10.1128/jb.176.13.3956-3965.1994.

引用本文的文献

3
Small-molecule inhibitors of bacterial AddAB and RecBCD helicase-nuclease DNA repair enzymes.
ACS Chem Biol. 2012 May 18;7(5):879-91. doi: 10.1021/cb300018x. Epub 2012 Mar 23.
4
Structure, assembly, and DNA packaging of the bacteriophage T4 head.
Adv Virus Res. 2012;82:119-53. doi: 10.1016/B978-0-12-394621-8.00018-2.
5
Condensed genome structure.
Adv Exp Med Biol. 2012;726:469-87. doi: 10.1007/978-1-4614-0980-9_21.
7
Structure and assembly of bacteriophage T4 head.
Virol J. 2010 Dec 3;7:356. doi: 10.1186/1743-422X-7-356.
8
Preserving genome integrity: the DdrA protein of Deinococcus radiodurans R1.
PLoS Biol. 2004 Oct;2(10):e304. doi: 10.1371/journal.pbio.0020304. Epub 2004 Sep 7.
9
Bacteriophage T4 genome.
Microbiol Mol Biol Rev. 2003 Mar;67(1):86-156, table of contents. doi: 10.1128/MMBR.67.1.86-156.2003.
10
Bacteriophage T4 self-assembly: localization of gp3 and its role in determining tail length.
J Bacteriol. 2000 Feb;182(3):680-8. doi: 10.1128/JB.182.3.680-688.2000.

本文引用的文献

1
Bacteriophage T4 gp2 interferes with cell viability and with bacteriophage lambda Red recombination.
J Bacteriol. 1999 Feb;181(4):1352-5. doi: 10.1128/JB.181.4.1352-1355.1999.
3
Analysis of gene control signals by DNA fusion and cloning in Escherichia coli.
J Mol Biol. 1980 Apr;138(2):179-207. doi: 10.1016/0022-2836(80)90283-1.
4
Physical mapping and cloning of bacteriophage T4 anti-restriction endonuclease gene.
J Bacteriol. 1982 Feb;149(2):694-9. doi: 10.1128/jb.149.2.694-699.1982.
5
Partial purification and properties of an exonuclease inhibitor induced by bacteriophage Mu-1.
J Virol. 1981 Aug;39(2):548-58. doi: 10.1128/JVI.39.2.548-558.1981.
6
A system for shotgun DNA sequencing.
Nucleic Acids Res. 1981 Jan 24;9(2):309-21. doi: 10.1093/nar/9.2.309.
7
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature. 1970 Aug 15;227(5259):680-5. doi: 10.1038/227680a0.
8
The effect of bacteriophage T4 infection on an ATP-dependent deoxyribonuclease in Escherichia coli.
Biochim Biophys Acta. 1971 Feb 11;228(3):767-9. doi: 10.1016/0005-2787(71)90747-7.
9
The nature of mutants in the lac promoter region.
J Mol Biol. 1968 Dec;38(3):421-6. doi: 10.1016/0022-2836(68)90396-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验