Department of Biology, The Catholic University of America, Washington, DC, USA.
Virol J. 2010 Dec 3;7:356. doi: 10.1186/1743-422X-7-356.
The bacteriophage T4 capsid is an elongated icosahedron, 120 nm long and 86 nm wide, and is built with three essential proteins; gp23*, which forms the hexagonal capsid lattice, gp24*, which forms pentamers at eleven of the twelve vertices, and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. The past twenty years of research has greatly elevated the understanding of phage T4 head assembly and DNA packaging. The atomic structure of gp24 has been determined. A structural model built for gp23 using its similarity to gp24 showed that the phage T4 major capsid protein has the same fold as that found in phage HK97 and several other icosahedral bacteriophages. Folding of gp23 requires the assistance of two chaperones, the E. coli chaperone GroEL and the phage coded gp23-specific chaperone, gp31. The capsid also contains two non-essential outer capsid proteins, Hoc and Soc, which decorate the capsid surface. The structure of Soc shows two capsid binding sites which, through binding to adjacent gp23 subunits, reinforce the capsid structure. Hoc and Soc have been extensively used in bipartite peptide display libraries and to display pathogen antigens including those from HIV, Neisseria meningitides, Bacillus anthracis, and FMDV. The structure of Ip1*, one of the components of the core, has been determined, which provided insights on how IPs protect T4 genome against the E. coli nucleases that degrade hydroxymethylated and glycosylated T4 DNA. Extensive mutagenesis combined with the atomic structures of the DNA packaging/terminase proteins gp16 and gp17 elucidated the ATPase and nuclease functional motifs involved in DNA translocation and headful DNA cutting. Cryo-EM structure of the T4 packaging machine showed a pentameric motor assembled with gp17 subunits on the portal vertex. Single molecule optical tweezers and fluorescence studies showed that the T4 motor packages DNA at a rate of up to 2000 bp/sec, the fastest reported to date of any packaging motor. FRET-FCS studies indicate that the DNA gets compressed during the translocation process. The current evidence suggests a mechanism in which electrostatic forces generated by ATP hydrolysis drive the DNA translocation by alternating the motor between tensed and relaxed states.
T4 噬菌体的衣壳是一个拉长的二十面体,长 120nm,宽 86nm,由三种必需的蛋白质组成:gp23*,形成六边形衣壳晶格;gp24*,在十二个顶点中的十一个形成五聚体;gp20,形成独特的十二聚体门户顶点,在包装过程中 DNA 由此进入,在感染过程中 DNA 由此离开。过去二十年的研究极大地提高了对噬菌体 T4 头部组装和 DNA 包装的理解。gp24 的原子结构已经确定。使用其与 gp24 的相似性构建的 gp23 结构模型表明,噬菌体 T4 的主要衣壳蛋白具有与噬菌体 HK97 和其他几个二十面体噬菌体相同的折叠。gp23 的折叠需要两种伴侣蛋白的协助,即大肠杆菌伴侣蛋白 GroEL 和噬菌体编码的 gp23 特异性伴侣蛋白 gp31。衣壳还包含两个非必需的外壳蛋白 Hoc 和 Soc,它们装饰衣壳表面。Soc 的结构显示了两个衣壳结合位点,通过与相邻的 gp23 亚基结合,增强了衣壳结构。Hoc 和 Soc 已广泛用于二聚肽展示文库,并用于展示病原体抗原,包括 HIV、脑膜炎奈瑟菌、炭疽芽孢杆菌和口蹄疫病毒的抗原。核心成分之一 Ip1*的结构已经确定,这为 IP 如何保护 T4 基因组免受降解羟甲基化和糖基化 T4 DNA 的大肠杆菌核酶的影响提供了线索。广泛的突变与 DNA 包装/终止酶蛋白 gp16 和 gp17 的原子结构相结合,阐明了参与 DNA 易位和头部完整 DNA 切割的 ATP 酶和核酸酶功能基序。T4 包装机的 cryo-EM 结构显示了一个由 gp17 亚基组装在门户顶点上的五聚体马达。单分子光学镊子和荧光研究表明,T4 马达以高达 2000bp/sec 的速度包装 DNA,这是迄今为止报道的任何包装马达中最快的速度。FRET-FCS 研究表明,DNA 在易位过程中被压缩。目前的证据表明,一种机制是通过交替马达处于紧张和放松状态,由 ATP 水解产生的静电力驱动 DNA 易位。