Suppr超能文献

内氏放线菌的葡萄糖和乳酸代谢

Glucose and lactate metabolism by Actinomyces naeslundii.

作者信息

Takahashi N, Yamada T

机构信息

Department of Oral Biochemistry, Tohoku University School of Dentistry, Sendai, Japan.

出版信息

Crit Rev Oral Biol Med. 1999;10(4):487-503. doi: 10.1177/10454411990100040501.

Abstract

Actinomyces are among the predominant bacteria in the oral microflora. This review discusses the glucose and lactate metabolism of Actinomyces naeslundii and its ecological significance in dental plaque. This bacterium has the Embden-Meyerhof-Parnas (EMP) pathway as the main route to degrade glucose. The EMP pathway-derived metabolic intermediates, phosphoenolpyruvate (PEP) and pyruvate, are further converted into different end-products, depending on the environment. Under anaerobic conditions in the absence of bicarbonate, the pyruvate is converted into lactate by a lactate dehydrogenase. In the presence of bicarbonate, the PEP is combined with bicarbonate and then converted into succinate through the succinate pathway, while the pyruvate is converted into formate and acetate through the pyruvate formate-lyase pathway. Under aerobic conditions, the pyruvate liberates acetate and CO2 through a pathway initiated by a pyruvate dehydrogenase. A. naeslundii strains also degrade lactate, aerobically, to acetate and CO2 through the conversion of lactate into pyruvate by a NAD-independent lactate dehydrogenase. These strains also synthesize glycogen from a glycolytic intermediate, glucose 6-phosphate. Besides atmospheric conditions and bicarbonate, the intracellular reduction-oxidation potential, carbohydrate concentration, and environmental pH also modulate the metabolism of A. naeslundii. Some of the phosphorylating enzymes involved in A. naeslundii metabolism--e.g., GTP/polyphosphate (PPn)-dependent glucokinase, pyrophosphate (PPi)-dependent phosphofructokinase, UDP-glucose pyrophosphorylase, and GDP/IDP-dependent PEP carboxykinase--are unique to A. naeslundii and have not been found in other oral bacteria. The utilization of PPn and PPi as phosphoryl donors, together with glycogen synthesis and lactate utilization, could contribute to the efficient energy metabolism found in A. naeslundii. Through this flexible and efficient metabolic capacity, A. naeslundii can adapt to fluctuating environments and compete with other bacteria in dental plaque. Further, this bacterium may modify the dental plaque environment and promote the microbial population shifts in dental plaque.

摘要

放线菌是口腔微生物群中的主要细菌之一。本综述讨论了内氏放线菌的葡萄糖和乳酸代谢及其在牙菌斑中的生态意义。这种细菌以糖酵解途径(Embden-Meyerhof-Parnas,EMP途径)作为降解葡萄糖的主要途径。根据环境不同,EMP途径衍生的代谢中间体磷酸烯醇式丙酮酸(PEP)和丙酮酸会进一步转化为不同的终产物。在无氧且没有碳酸氢盐的条件下,丙酮酸通过乳酸脱氢酶转化为乳酸。在有碳酸氢盐存在的情况下,PEP与碳酸氢盐结合,然后通过琥珀酸途径转化为琥珀酸,而丙酮酸则通过丙酮酸甲酸裂解酶途径转化为甲酸和乙酸。在有氧条件下,丙酮酸通过丙酮酸脱氢酶启动的途径释放出乙酸和二氧化碳。内氏放线菌菌株还可以在有氧条件下,通过一种不依赖NAD的乳酸脱氢酶将乳酸转化为丙酮酸,进而将乳酸降解为乙酸和二氧化碳。这些菌株还能从糖酵解中间体6-磷酸葡萄糖合成糖原。除了大气条件和碳酸氢盐外,细胞内的氧化还原电位、碳水化合物浓度和环境pH值也会调节内氏放线菌的代谢。一些参与内氏放线菌代谢的磷酸化酶,如GTP/多聚磷酸盐(PPn)依赖性葡萄糖激酶、焦磷酸(PPi)依赖性磷酸果糖激酶、UDP-葡萄糖焦磷酸化酶和GDP/IDP依赖性PEP羧激酶,是内氏放线菌特有的,在其他口腔细菌中尚未发现。利用PPn和PPi作为磷酰基供体,以及糖原合成和乳酸利用,可能有助于内氏放线菌实现高效的能量代谢。通过这种灵活而高效的代谢能力,内氏放线菌能够适应不断变化的环境,并与牙菌斑中的其他细菌竞争。此外,这种细菌可能会改变牙菌斑环境,促进牙菌斑中微生物种群的变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验