Suppr超能文献

用于研究决定噬菌体抗体在复杂抗原上筛选成功与否的参数的模型系统。

Model systems to study the parameters determining the success of phage antibody selections on complex antigens.

作者信息

Mutuberria R, Hoogenboom H R, van der Linden E, de Bruïne A P, Roovers R C

机构信息

University Hospital Maastricht, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.

出版信息

J Immunol Methods. 1999 Dec 10;231(1-2):65-81. doi: 10.1016/s0022-1759(99)00141-6.

Abstract

Phage antibody display technology offers a powerful tool for the isolation of specific antibodies to defined target antigens. Most selection strategies described to date have relied on the availability of purified and often recombinant antigen, providing the possibility to perform selections on a well-defined antigen source. However, when the target antigen cannot be purified (e.g., an integral membrane protein), or if the antigen is unknown (e.g., when searching for novel markers on cells or tissues), panning of phage antibody libraries has to be performed on complex antigen sources such as cell surfaces or tissue sections, or even by in vivo selection methods. This provides a series of technical and experimental challenges. One focus of our research is to select antibodies directed to novel cancer-induced antigens expressed by tumours and by the tumour vasculature. To understand the parameters governing selection on complex antigen sources and to assess the efficiency of these phage library selections, we have set up two model selection systems in which both tumour cells and vascular endothelial cells serve as target "antigen". We describe a model based on phage antibodies directed to the tumour antigen epithelial glycoprotein-2, to compare phage antibody selections on a range of different antigen sources including purified and recombinant antigen, whole live cells, tissue cryosections and in vivo grown solid tumours. Secondly, we describe a model based on a phage antibody directed against the endothelial cell inducible adhesion molecule E-selectin. We compare selections on cultured cell monolayers with selections on cell suspensions immobilised on columns, to determine which selection approach is most suitable for the identification of novel tumour endothelial cell markers. Our data provide insight into the efficiency and thus potency of different selection strategies and show that there are very large differences in the recovery and enrichment of binding phage between the different methods tested. Our results further demonstrate the feasibility of phage antibody selections on whole, intact cells and show that these may sometimes compare favourably to selections on purified antigen. Selections on endothelial cells immobilised on columns compare favourably with selections on cell-monolayers; the most favourable conditions for both selection procedures are described. The implications of our data for phage antibody selections on these different complex antigen sources using either non-immune or immune phage antibody repertoires are discussed. The use of model systems such as the ones described here will help to determine optimal experimental conditions for phage library selections on complex antigens and aid in developing more powerful selection procedures for target discovery.

摘要

噬菌体抗体展示技术为筛选针对特定靶抗原的特异性抗体提供了一个强大的工具。迄今为止所描述的大多数筛选策略都依赖于纯化的、通常是重组的抗原的可用性,从而有可能在明确界定的抗原来源上进行筛选。然而,当靶抗原无法纯化时(例如,一种整合膜蛋白),或者抗原未知时(例如,在寻找细胞或组织上的新型标志物时),就必须在复杂的抗原来源(如细胞表面或组织切片)上进行噬菌体抗体文库的淘选,甚至要通过体内筛选方法。这带来了一系列技术和实验上的挑战。我们研究的一个重点是筛选针对肿瘤及其血管系统所表达的新型癌症诱导抗原的抗体。为了了解在复杂抗原来源上进行筛选的控制参数并评估这些噬菌体文库筛选的效率,我们建立了两个模型筛选系统,其中肿瘤细胞和血管内皮细胞都作为靶“抗原”。我们描述了一个基于针对肿瘤抗原上皮糖蛋白-2的噬菌体抗体的模型,以比较在一系列不同抗原来源上的噬菌体抗体筛选,这些抗原来源包括纯化的和重组的抗原、完整的活细胞、组织冷冻切片以及体内生长的实体瘤。其次,我们描述了一个基于针对内皮细胞诱导性黏附分子E-选择素的噬菌体抗体的模型。我们将在培养的细胞单层上的筛选与在固定于柱上的细胞悬液上的筛选进行比较,以确定哪种筛选方法最适合鉴定新型肿瘤内皮细胞标志物。我们的数据深入了解了不同筛选策略的效率及其效能,并表明在所测试的不同方法之间,结合噬菌体的回收和富集存在非常大的差异。我们的结果进一步证明了在完整的活细胞上进行噬菌体抗体筛选的可行性,并表明这些筛选有时可能优于在纯化抗原上的筛选。在固定于柱上的内皮细胞上的筛选与在细胞单层上的筛选相比具有优势;描述了两种筛选程序最有利的条件。讨论了我们的数据对于使用非免疫或免疫噬菌体抗体库在这些不同复杂抗原来源上进行噬菌体抗体筛选的意义。使用本文所述的模型系统将有助于确定在复杂抗原上进行噬菌体文库筛选的最佳实验条件,并有助于开发更强大的用于靶标发现的筛选程序。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验