Suppr超能文献

带电的膜表面会阻碍糖鞘脂在磷脂双层之间由蛋白质介导的转移。

Charged membrane surfaces impede the protein-mediated transfer of glycosphingolipids between phospholipid bilayers.

作者信息

Mattjus P, Pike H M, Molotkovsky J G, Brown R E

机构信息

The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA.

出版信息

Biochemistry. 2000 Feb 8;39(5):1067-75. doi: 10.1021/bi991810u.

Abstract

A lipid transfer protein that facilitates the transfer of glycolipids between donor and acceptor membranes has been investigated using a fluorescence resonance energy transfer assay. The glycolipid transfer protein (23-24 kDa, pI 9.0) catalyzes the high specificity transfer of lipids that have sugars beta-linked to either a ceramide or a diacylglycerol backbone, such as simple glycolipids and gangliosides, but not the transfer of phospholipids, cholesterol, or cholesterol esters. In this study, we examined the effect of different charged lipids on the rate of transfer of anthrylvinyl-labeled galactosylceramide (1 mol %) from a donor to acceptor vesicle population at neutral pH. Compared to neutral donor vesicle membranes, introduction of negatively charged lipid at 5 or 10 mol % into the donor vesicles significantly decreased the transfer rate. Introduction of the same amount of negative charge into the acceptor vesicle membrane did not impede the transfer rate as effectively. Also, positive charge in the donor vesicle membrane was not as effective at slowing the transfer rate as was negative charge in the donor vesicle. Increasing the ionic strength of the buffer with NaCl significantly reversed the charge effects. At neutral pH, the transfer protein (pI congruent with 9.0) is expected to be positively charged, which may promote association with the negatively charged donor membrane. Based on these and other experiments, we conclude that the transfer process follows first-order kinetics and that the off-rate of the transfer protein from the donor vesicle surface is the rate-limiting step in the transfer process.

摘要

利用荧光共振能量转移测定法对一种促进糖脂在供体膜和受体膜之间转移的脂质转移蛋白进行了研究。糖脂转移蛋白(23 - 24 kDa,pI 9.0)催化具有与神经酰胺或二酰基甘油主链以β键相连的糖的脂质的高特异性转移,如简单糖脂和神经节苷脂,但不催化磷脂、胆固醇或胆固醇酯的转移。在本研究中,我们检测了在中性pH条件下,不同带电脂质对供体囊泡群体中蒽乙烯基标记的半乳糖神经酰胺(1 mol%)向受体囊泡转移速率的影响。与中性供体囊泡膜相比,向供体囊泡中引入5或10 mol%的带负电脂质会显著降低转移速率。向受体囊泡膜中引入相同数量的负电荷对转移速率的阻碍作用没有那么有效。此外,供体囊泡膜中的正电荷在减缓转移速率方面不如供体囊泡中的负电荷有效。用NaCl增加缓冲液的离子强度可显著逆转电荷效应。在中性pH条件下,转移蛋白(pI约为9.0)预计带正电荷,这可能促进其与带负电的供体膜结合。基于这些及其他实验,我们得出结论,转移过程遵循一级动力学,并且转移蛋白从供体囊泡表面的解离速率是转移过程中的限速步骤。

相似文献

2
Protein mediated glycolipid transfer is inhibited FROM sphingomyelin membranes but enhanced TO sphingomyelin containing raft like membranes.
Biochim Biophys Acta. 2005 May 20;1669(2):87-94. doi: 10.1016/j.bbamem.2004.12.014. Epub 2005 Jan 27.
4
General kinetic model for protein-mediated phospholipid transfer between membranes.
Arch Biochem Biophys. 1988 Nov 1;266(2):299-312. doi: 10.1016/0003-9861(88)90262-7.
6
Membrane interaction and activity of the glycolipid transfer protein.
Biochim Biophys Acta. 2006 Nov;1758(11):1732-42. doi: 10.1016/j.bbamem.2006.06.020. Epub 2006 Jul 7.
8
Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET.
Biochim Biophys Acta. 2005 Oct 1;1716(1):49-58. doi: 10.1016/j.bbamem.2005.09.002.
9
Membrane curvature effects on glycolipid transfer protein activity.
Langmuir. 2007 Nov 6;23(23):11726-33. doi: 10.1021/la701927u. Epub 2007 Oct 4.
10

引用本文的文献

2
3
An electrostatic switching mechanism to control the lipid transfer activity of Osh6p.
Nat Commun. 2019 Sep 2;10(1):3926. doi: 10.1038/s41467-019-11780-y.
4
MicroRNA 196B Regulates HOXA5, HOXB6 and GLTP Expression Levels in Colorectal Cancer Cells.
Pathol Oncol Res. 2019 Jul;25(3):953-959. doi: 10.1007/s12253-018-0399-3. Epub 2018 Mar 12.
5
Phosphatidylserine Stimulates Ceramide 1-Phosphate (C1P) Intermembrane Transfer by C1P Transfer Proteins.
J Biol Chem. 2017 Feb 10;292(6):2531-2541. doi: 10.1074/jbc.M116.760256. Epub 2016 Dec 23.
6
Sphingolipid transfer proteins defined by the GLTP-fold.
Q Rev Biophys. 2015 Aug;48(3):281-322. doi: 10.1017/S003358351400016X. Epub 2015 Mar 23.

本文引用的文献

3
The caveolae membrane system.
Annu Rev Biochem. 1998;67:199-225. doi: 10.1146/annurev.biochem.67.1.199.
4
The GM2 activator protein, its roles as a co-factor in GM2 hydrolysis and as a general glycolipid transport protein.
Biochim Biophys Acta. 1998 Jul 31;1393(1):1-18. doi: 10.1016/s0005-2760(98)00057-5.
5
Oxidative modification of HDL3 in vitro and its effect on PLTP-mediated phospholipid transfer.
Biochim Biophys Acta. 1998 Mar 30;1391(2):181-92. doi: 10.1016/s0005-2760(98)00008-3.
8
Sphingolipid organization in biomembranes: what physical studies of model membranes reveal.
J Cell Sci. 1998 Jan;111 ( Pt 1)(0 1):1-9. doi: 10.1242/jcs.111.1.1.
9
Phospholipid transfer proteins revisited.
Biochem J. 1997 Jun 1;324 ( Pt 2)(Pt 2):353-60. doi: 10.1042/bj3240353.
10
Sphingolipids--the enigmatic lipid class: biochemistry, physiology, and pathophysiology.
Toxicol Appl Pharmacol. 1997 Jan;142(1):208-25. doi: 10.1006/taap.1996.8029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验