Suppr超能文献

芽孢衣层在枯草芽孢杆菌芽孢对过氧化氢、人工紫外线-C、紫外线-B和太阳紫外线辐射抗性中的作用

Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation.

作者信息

Riesenman P J, Nicholson W L

机构信息

Department of Veterinary Science and Microbiology, University of Arizona, Tucson, Arizona 85721, USA.

出版信息

Appl Environ Microbiol. 2000 Feb;66(2):620-6. doi: 10.1128/AEM.66.2.620-626.2000.

Abstract

Spores of Bacillus subtilis possess a thick protein coat that consists of an electron-dense outer coat layer and a lamellalike inner coat layer. The spore coat has been shown to confer resistance to lysozyme and other sporicidal substances. In this study, spore coat-defective mutants of B. subtilis (containing the gerE36 and/or cotE::cat mutation) were used to study the relative contributions of spore coat layers to spore resistance to hydrogen peroxide (H(2)O(2)) and various artificial and solar UV treatments. Spores of strains carrying mutations in gerE and/or cotE were very sensitive to lysozyme and to 5% H(2)O(2), as were chemically decoated spores of the wild-type parental strain. Spores of all coat-defective strains were as resistant to 254-nm UV-C radiation as wild-type spores were. Spores possessing the gerE36 mutation were significantly more sensitive to artificial UV-B and solar UV radiation than wild-type spores were. In contrast, spores of strains possessing the cotE::cat mutation were significantly more resistant to all of the UV treatments used than wild-type spores were. Spores of strains carrying both the gerE36 and cotE::cat mutations behaved like gerE36 mutant spores. Our results indicate that the spore coat, particularly the inner coat layer, plays a role in spore resistance to environmentally relevant UV wavelengths.

摘要

枯草芽孢杆菌的孢子具有一层厚厚的蛋白质外壳,该外壳由一个电子致密的外层和一个类似薄片的内层组成。已证明孢子外壳能赋予对溶菌酶和其他杀孢子物质的抗性。在本研究中,枯草芽孢杆菌的孢子外壳缺陷型突变体(含有gerE36和/或cotE::cat突变)被用于研究孢子外壳各层对孢子抵抗过氧化氢(H₂O₂)以及各种人工和太阳紫外线处理的相对贡献。携带gerE和/或cotE突变的菌株的孢子对溶菌酶和5%的H₂O₂非常敏感,野生型亲本菌株的化学脱壳孢子也是如此。所有外壳缺陷型菌株的孢子对254纳米的UV-C辐射的抗性与野生型孢子相同。具有gerE36突变的孢子对人工UV-B和太阳紫外线辐射的敏感性明显高于野生型孢子。相比之下,具有cotE::cat突变的菌株的孢子对所有使用的紫外线处理的抗性明显高于野生型孢子。同时携带gerE36和cotE::cat突变的菌株的孢子表现得像gerE36突变体的孢子。我们的结果表明,孢子外壳,特别是内层,在孢子抵抗环境相关紫外线波长方面发挥作用。

相似文献

6
Germination properties of a spore coat-defective mutant of Bacillus subtilis.
J Bacteriol. 1981 Jun;146(3):1106-16. doi: 10.1128/jb.146.3.1106-1116.1981.
7
Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation.
Appl Environ Microbiol. 2001 Mar;67(3):1274-9. doi: 10.1128/AEM.67.3.1274-1279.2001.
8
Characterization of spores of Bacillus subtilis which lack dipicolinic acid.
J Bacteriol. 2000 Oct;182(19):5505-12. doi: 10.1128/JB.182.19.5505-5512.2000.
9
Inactivation by Pulsed Light of Bacillus subtilis Spores with Impaired Protection Factors.
Photochem Photobiol. 2016 Mar;92(2):301-307. doi: 10.1111/php.12568. Epub 2016 Feb 11.
10
The timing of cotE expression affects Bacillus subtilis spore coat morphology but not lysozyme resistance.
J Bacteriol. 2007 Mar;189(6):2401-10. doi: 10.1128/JB.01353-06. Epub 2006 Dec 15.

引用本文的文献

2
Genomic Insights into the Pathogenicity and Drug-Resistance of a Isolated from Human Teeth.
Infect Drug Resist. 2024 Aug 19;17:3623-3635. doi: 10.2147/IDR.S477637. eCollection 2024.
3
4
New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed.
Microbiol Mol Biol Rev. 2023 Jun 28;87(2):e0008022. doi: 10.1128/mmbr.00080-22. Epub 2023 Mar 16.
7
Characterization of a robot-assisted UV-C disinfection for the inactivation of surface-associated microorganisms and viruses.
J Photochem Photobiol. 2022 Sep;11:100123. doi: 10.1016/j.jpap.2022.100123. Epub 2022 May 1.
8
Dose-response analysis of Bacillus thuringiensis HD-1 cry- spore reduction on surfaces using formaldehyde with pre-germination.
J Appl Microbiol. 2022 Dec;133(6):3424-3437. doi: 10.1111/jam.15767. Epub 2022 Oct 24.
9
High Energy and Power Density Peptidoglycan Muscles through Super-Viscous Nanoconfined Water.
Adv Sci (Weinh). 2022 May;9(15):e2104697. doi: 10.1002/advs.202104697. Epub 2022 Mar 14.
10

本文引用的文献

1
TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE.
Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072-8. doi: 10.1073/pnas.44.10.1072.
3
Dipicolinic Acid Greatly Enhances Production of Spore Photoproduct in Bacterial Spores upon UV Irradiation.
Appl Environ Microbiol. 1993 Feb;59(2):640-3. doi: 10.1128/aem.59.2.640-643.1993.
5
Artificial and solar UV radiation induces strand breaks and cyclobutane pyrimidine dimers in Bacillus subtilis spore DNA.
Appl Environ Microbiol. 2000 Jan;66(1):199-205. doi: 10.1128/AEM.66.1.199-205.2000.
6
A Bacillus subtilis secreted protein with a role in endospore coat assembly and function.
J Bacteriol. 1999 Jun;181(12):3632-43. doi: 10.1128/JB.181.12.3632-3643.1999.
7
Bacillus subtilis spore coat.
Microbiol Mol Biol Rev. 1999 Mar;63(1):1-20. doi: 10.1128/MMBR.63.1.1-20.1999.
8
A four-dimensional view of assembly of a morphogenetic protein during sporulation in Bacillus subtilis.
J Bacteriol. 1999 Feb;181(3):781-90. doi: 10.1128/JB.181.3.781-790.1999.
10
Involvement of superoxide dismutase in spore coat assembly in Bacillus subtilis.
J Bacteriol. 1998 May;180(9):2285-91. doi: 10.1128/JB.180.9.2285-2291.1998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验